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Abstract 

Bluetongue is an economically important midge-borne disease affecting 

domestic and wild ruminants worldwide.  The disease, caused by the 

bluetongue virus (BTV), is highly endemic in South India, occurring with 

varying severity every year since 1963, causing high morbidity and 

mortality, resulting in huge economic losses to subsistence farmers, 

impacting the GDP of the country and affecting food security.  The 

bluetongue epidemiological system in South India is characterized by an 

unusually wide diversity of susceptible ruminant hosts, many potential 

Culicoides vector species and numerous pathogen serotypes and strains. 

These factors (intrinsic and extrinsic) contribute to disease impacts that 

vary widely over geographical space 

Chapter 2, deals with identification of remote sensed variables in 

discriminating between presence and absence of bluetongue outbreaks and 

development of risk map using non-linear discriminant analysis (NLDA) 

approach. 

Chapter 3 deals with  understanding the role of extrinsic factors such as 

monsoon conditions in driving seasonality in BTV outbreaks over two 

decades in Andhra Pradesh, India using a Bayesian Poisson regression 

model framework, accounting for temporal autocorrelation. 

In chapter 4 the mean annual numbers of outbreaks in each district in South 

Indian states were examined in relation to land-cover, host availability and 

climate predictors using a Bayesian generalised linear mixed model with 

Poisson errors and a conditional autoregressive error structure to account 

for spatial autocorrelation.   



In Chapter 5 the annual number of outbreaks in each district in South India 

was examined in relation to climate predictors (temperature and 

precipitation) at different lags using a Bayesian generalized linear mixed 

model with Poisson errors.   

In chapter 6 a range of suitable predictors was considered for identifying 

their relationships with bluetongue outbreaks using Bayesian Network 

Modelling (BNM), and the important variables were used to develop a 

Bayesian geostatistical model accounting for spatial autocorrelation 

The analysis resulted in development of spatial risk maps at district and 

village level, district level yearly predictions and monthly state level 

predictions, which can contribute to the development of an early warning 

system for the disease in South India.  
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1.1 Bluetongue virus, clinical signs and transmission 

 

Bluetongue virus (BTV) is a double-stranded RNA virus (family 

Reoviridae, genus Orbivirus) that causes bluetongue in ruminants.  Clinical 

signs include fever, nasal discharge, excessive salivation, facial odema, 

ulceration and cyanosis of tongue (bluetongue), coronitis, skeletal muscle 

damage (Fig. 1.1).  Severe clinical signs are observed in certain breeds of 

sheep, especially European fine wool and mutton breeds and mild 

symptoms  in cattle, goat, camelids and carnivores (Maclachlan et al., 2009; 

Taylor, 1986; Verwoerd & Erasmus, 2004).  Currently, twenty six BTV 

serotypes are recognized globally (Maan et al., 2012).  

 

Figure 1.1 Clinical signs observed in sheep affected with bluetongue: Bluetongue 

is characterized by (a) high fever, salivation (b) oedema of face, lips and 

mucopurulent discharge (c) ulceration, haemorrhages of oral mucous 

membranes, cyanosis of tongue and (d) severe lameness in the later part of the 

disease due to coronitis.  (Pictures taken during 2009 BTV outbreaks in 

Karnataka, India. Courtesy: ICAR-NIVEDI, Bangalore, Karnataka, India). 
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Bluetongue virus is transmitted between susceptible hosts by certain 

species of biting midges, Culicoides (Diptera : Ceratopogonidae) (Mellor, 

2000) and is hence restricted to areas and seasons where competent adult 

vector populations occur, broadly in the tropical and sub-tropical countries 

between 350S and 400N (Tabachnick, 2003) but extending in  places 

(Europe, N. America) up to 500N (Purse et al., 2005; Saegerman et al., 

2008).  Culicoides populations build up to high abundances under suitable 

conditions, and adults can disperse over a few to tens of kilometres a day, 

leading to rapid disease spread (Burgin et al., 2013; Sedda et al., 2012).  

The rapidity of the spread of bluetongue and its high impact on trade  led 

to its designation as an OIE-listed, notifiable disease (Gibbs & Greiner, 

1994). 

There are 1,357 known species of Culicoides  of which only 20  are of 

medical or veterinary importance  (Purse et al., 2015).  Almost all species 

(96%) of Culicoides  are obligate blood suckers of mammals and birds 

(Mellor et al., 2000).  The life cycle of Culicoides  consists of the egg, four 

larval stages, pupal and adult stages (Mellor et al., 2000).  Sixty one species 

of Culicoides  have been reported from India (Sen & Gupta, 1959; Wirth & 

Hubert, 1989).  The actual number may be greater, but there is a lack of 

systematic vector studies in the sub-continent (Ilango, 2006). 

Culicoides imicola is the principal vector transmitting BTV in tropical and 

sub-tropical countries (Mellor et al., 2000).  It is also the prinicpal vector 

in some parts of Southern Europe.  Palaearctic species (at least one species 

each from the Obsoletus and Pulicaris groups) can also act as effective 

vectors of BTV (Mellor et al., 1990; Mellor & Prrzous, 1979; Wilson & 
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Mellor, 2009).  C.sonorensis  is the prinicpal vector in Northern America 

(Tabachnick, 2003; Wittmann et al., 2002), whereas C.brevitarsis  is the 

main vector in Australia (Muller et al., 1982).  

1.2 History of bluetongue 

 

Based on clinical signs, bluetongue was first recognized in the year 1902 

and was known as   Malarial Catarrhal fever or Epizootic Catarrhal fever 

affecting imported European breeds of sheep in Africa (Henning, 1949; 

Maclachlan et al., 2009).  Initially (1902-1943)  bluetongue was restricted 

to Africa.  The first outbreak outside Africa was reported in Cyprus in 1943 

(Gambles, 1949).  The disease was thereafter reported from the Middle East 

(1949), the Americas (1952), Europe (1956), the Indian subcontinent 

(1959) and Australia (1975) (Erasmus et al., 2009; Verwoerd & Erasmus, 

2004).  Major outbreaks  occured in Europe (Spain and Portugal) from 

1956-1960 and have re-occurred over a wider area since 1998 (Wilson & 

Mellor, 2009).   

1.3 Bluetongue in India 

1.3.1 Clinical BT in South India versus seroprevalence in North India 

 

Since the first confirmed outbreak of bluetongue in India in 1963 (Sapre, 

1964) outbreaks of  BTV in sheep have been reported from many different 

states including Gujarat, Haryana, Jammu & Kashmir, Karnataka, Andhra 

Pradesh and Tamil Nadu.  The disease is highly endemic, with clinical 

outbreaks reported regularly in the Southern states (Fig. 1.2) (Prasad et al., 

2009).  Elsewhere in India there are many reports (Bhalodiya & Jhala, 

2002; Bhanuprakash et al., 2007; Chauhan et al., 2004; Prasad et al., 1992) 



5 
 

of sero-prevalence in different species of livestock (Dadawala et al., 2013; 

Desai, 2004; Jain et al., 1992), but on an irregular basis.  In a large scale 

national sero-survey of antibodies against bluetongue virus involving 

twelve states (around 7000 serum samples screened), approximately 50% 

of the samples from sheep tested positive and 58% from goats.  The past 

reports of widespread high sero-prevalence from different parts of India but 

with clinical disease restricted to South India suggests either there is a 

diversity of environmental factors (climate, host and land cover) which 

might be playing a role in driving this heterogeneity in bluetongue 

outbreaks or there is underreporting in the rest of the Indian states (Ahuja 

et al., 2008). 

Although virus isolations have been made from different species of 

Culicoides (Dadawala et al., 2012), there are no studies in India of the 

vectorial capacity or seasonality of any of the Culicoides species 

(C.brevitarsis, C.actoni, C.peregrinus, C.imicola, C.oxystoma, C.fulvus, 

C.brevipalpis) (Patel et al., 2007; Reddy & Hafeez, 2008), some of which 

are proven candidate vectors in other countries (Mellor et al., 2000; Muller 

et al., 1982).   
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Figure 1.2 Map of India highlighting the three South Indian states under study 

(Andhra Pradesh, Karnataka and Tamil Nadu) and the other states. 

1.3.2 Impacts of BT on rural livelihoods, food security and economic 

losses 

 

Bluetongue in India was ranked as the top disease of sheep between 1997 

and 2005, with 2313 outbreaks resulting in approximately 0.4 million cases 

and 64,086 deaths (Ahuja et al., 2008).  Bluetongue losses are both direct 

(up to 30% case fatality rates) (Sreenivasulu et al., 2003) and indirect, from 

animal weight loss, poor wool quality and trade restrictions. 

South Asian countries (including India) account for 22% of the world’s 

human population and more than 40% of the world’s poor (World Bank, 

2001, IFAD, 2001).  Eighty percent of the poor live in rural areas.  India 

accounts for over 75% of the South Asian population, with 82% of poor 

people, and contributes 70% (excluding poultry) of the livestock population 
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of the region.  Sheep farming contributes 7.5% (65 million sheep) and goat 

farming 11.6 % (126 million goats) of the global sheep and goat 

populations respectively (FAOSTAT, 2008).  The livestock sector 

contributes around 6% of India’s Gross Domestic Product (Ali, 2007) and 

25% of agricultural GDP and has grown at an annual rate of 5.6% over the 

last few decades (Ali, 2007).  This sector supports the livelihoods of over 

200 million rural poor (Ahuja et al., 2008) with around five million 

households engaged in rearing small ruminants.  The majority of these are 

small, marginal and landless households that are able to rear small 

ruminants due to the low initial investment and operational costs involved 

(Mcleod & Kristjanson, 1999).  Mixed farming systems, with 

complementary crop and livestock management activities, thus cover 83% 

of all agricultural land in India (Chacko et al., 2010).  

In addition to its food and manure production functions, livestock rearing 

increases household resilience in capital terms, for times of crisis (Ahuja et 

al., 2000; World Bank, 1999).  Several empirical studies indicate that 

livestock rearing has a positive impact on equity in terms of income, 

employment and poverty reduction in rural areas (see references cited in 

Ali, 2007).  Meat and milk consumption are both set to grow by 2020 

(Delgado et al., 1999), representing a significant opportunity for India to 

boost rural incomes and accelerate the pace of poverty reduction, but 

disease represents a significant barrier to realising the productive potential 

of livestock (Ahuja et al., 2008).  
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 Intrinsic and extrinsic factors in disease transmission in South India 

 

Bluetongue causes huge mortality and affects the productivity of the 

animals in India and other affected countries, but disease impacts vary 

widely in space and time even in endemic areas  The two main groups of 

drivers that may control disease dynamics are intrinsic and extrinsic  (also 

known as endogenous and exogenous) (Koelle  & Pascual, 2004; Ruiz et 

al., 2006).   

1.4 Intrinsic factors 

1.4.1 Role of past introduction of crossbreeds to improve local breeds 

 

In endemic regions, local ruminant breeds often demonstrate resistance to 

disease, and clinical signs are often observed only in imported breeds that 

are more susceptible to infection (Coetzee et al., 2012; Daniels et al., 2003), 

or when the virus is introduced into new regions with immunologically 

naive and susceptible sheep population.  There is no documented evidence 

of BTV or bluetongue-like disease in India before the confirmed report in 

1963 (Sapre, 1964), therefore an attempt was made to search the animal 

disease outbreaks database (http://digital.nls.uk/indiapapers/browse/) from 

1900 onwards.  The search resulted in one report of unusual sheep mortality 

in the year 1935 and, interestingly, a bacterial or parasitic cause was ruled 

out.  This rare episode of high sheep mortality was preceded, in 1930, by 

the first documented evidence of crossbreeding to improve the wool quality 

of local breeds in India. 

 During the two decades following the 1963 confirmed report of BTV in 

India, incidents of recorded transmission were confined to imported breeds 
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of sheep, particularly Southdown, Rambouillet, Russian Merino, 

Corriedale and Suffolk.  Crossbreeding in India, using imported 

Rambouillet sheep, was started in 1962 with the establishment of the 

CSWRI (Central Sheep and Wool Research Institute).   Subsequently the 

AICRP (All India Co-ordinated Research Project) was founded in 1970, 

with different centres all over India.  From 1981, BTV was also observed 

in local and crossbred sheep (Prasad et al., 2009).  The disease now occurs 

every year in South India with varying severity.  

 

 

Figure 1.3: Time line of the bluetongue outbreaks in the past, and crossbreeding 

of local breeds with exotic sheep in India. 

1.4.2 Herd immunity 

 

Immunity against bluetongue virus is mainly elicited by the virus protein 2 

(VP2), which also determines the serotype.  There is very little cross-

protection and it is mainly restricted to serotypes which have similar 

nucleotide sequence in the VP2 region.  Immunity against any one 

bluetongue serotype may not last more than three years, and there are 
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reports of protection against serotypes which fall within a particular 

serogroup (a group of serotypes which elicits cross-reacting antibody 

response) (Maan et al., 2009) 

1.4.3 Serotypes 

 

Out of 26 known serotypes, twenty two are circulating in South India, based 

on virus isolation or antibodies against the serotypes (tested using the serum 

neutralization test against particular serotypes) (Sreenivasulu et al., 2003).  

Bluetongue serotypes 1, 2,3,5,6 and 10 are of high pathogenicity, with the 

potential for causing epidemics in Africa (Dungu et al., 2004).  Particular 

strains within a single serotype can be more pathogenic than others 

(Saegerman et al., 2007). 

1.4.4 Breed and host susceptibility 

 

There are more than 40 breeds of sheep in India of which 14 are present in 

South India.  Sheep breeds can be categorized into four different types; non-

descript sheep, local breeds, purely exotic breeds and crossbreeds.  These 

descriptions are based on phenotypic and genotypic characterization of 

indigenous breeds.  Non-descript sheep are defined as indigenous breeds 

which cannot be identified or do not have more than 50% similarity 

(phenotypically and genotypically) to any recognized local breed.  The 

other indigenous breeds are considered under the local breed category, with 

distinct genotypic and phenotypic characters.  Crossbreeds of sheep are 

defined as those breeds which are a mix of exotic and local breeds and those 

which are mix of just local breeds do not fall under this category.  
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Fundamental differences have recently been identified in the inherent 

susceptibility of endothelial cells from cattle and sheep to BTV infection 

(DeMaula et al., 2001, 2002a 2002b).  Pure local breeds of Asia are thought 

to be resistant compared to the exotic breeds of Europe and America, as 

demonstrated by the presence of antibodies against BTV in the local breeds 

of South East Asian countries such as India (Prasad et al., 2009), Indonesia 

and Malaysia (Hassan et al., 1992 and Sendow et al., 1991) without any 

clinical signs of the disease.  

1.4.5 Bluetongue virus serotypes variability and re-assortment 

 

Bluetongue is a segmented orbivirus which has the ability to “re-assort” or 

exchange genomic segments with other BTV strains co-infecting the same 

host.  This re-assortment generates the additional threat of fundamental 

shifts in virulence and in the transmission potential of strains (Shaw et al., 

2013). For example, field and vaccine strains of BTV are known to have 

re-assorted to produce unwanted phenotypes during the recent European 

epidemic (Batten et al., 2008).  Recent reverse genetics research suggests 

that the re-assortment process is very flexible (it can involve any segment) 

and is frequent in BTV (Shaw et al., 2013).  Worldwide, the impacts of 

bluetongue viruses have changed in recent decades, with unprecedented 

outbreaks of multiple BTV serotypes across Europe since 1998 (Saegerman 

et al., 2008). 

BTV serotypes in India are from both eastern and western topotypes (Maan 

et al., 2012, Maan et al., 2012) and there is a possibility of new re-assortants  

circulating in the region, as was recently  observed in the case of serotype 
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3 (eastern and western reassorted strain) (Maan et al., 2012).  The presence 

of both the eastern and western topotypes and vaccine strains in India may 

be due to the importation of livestock from other countries (Rao et al., 

2012).   

1.4.6 Stress of other diseases, lambing and other stressors 

 

Although bluetongue is the major infectious disease of sheep in India, other 

diseases are also present.  Enterotoxaemia is now controlled by extensive 

vaccination coverage (~90%), resulting in a drastic reduction in the number 

of reported outbreaks in the past decade (Ahuja et al., 2008).  There is high 

sero-prevalence, but few clinical outbreaks in sheep, of PPR (Singh et al., 

2004) which also occurs as mixed infections with BTV (Mondal et al., 

2009).  Ecto and endoparasites of sheep are also present, fascioliasis being 

the most common.  Infection with other diseases can make the animals 

more susceptible to bluetongue which can be more severe in immuno-

compromised animals (Brodie et al., 1998).  Nutritional deficiencies and 

the stress of lambing (Erasmus, 1975) can also make animals more 

susceptible to bluetongue and other viral diseases.   

1.5 Extrinsic factors 

 

Apart from the spatial variation in risk of BT in South India, there is 

temporal variation with impacts varying widely between years.  Monsoon 

conditions like the South-West monsoon and the North-East monsoon are 

expected to govern within-year seasonality (Prasad et al., 2009), whereas 

inter-annual variability may be due to the influence of waning herd 
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immunity  (intrinsic factor) coupled with stock replacement (biotic 

extrinsic factor) or inter-annual climate variability (abiotic extrinsic factor). 

Among extrinsic factors, temperature plays a role in virus infection of the 

vectors and also the transmission of the virus to their host (Wellby et al., 

1996).  Replication of the virus in the midges does not occur at temperatures 

at or below 150C (Carpenter et al., 2011).   As the temperature increases, 

infection rates also increase, viral replication is faster and transmission 

occurs sooner, although midges survive for relatively shorter times.  

Seasonality has been observed to have significant influence on the 

abundance of different Culicoides spp (Sanders et al., 2011; Searle et al., 

2013).    

1.6 How can statistical models help in understanding intrinsic and 

extrinsic drivers of disease at different spatial and temporal scales? 

 

The methods used in the analyses of outbreak data depend on the spatial 

and temporal scale of the data and whether the dependent variable is 

normally distributed, or count data, or presence and absence data.  The 

methods applied in the analysis of epidemiological data will be broadly 

discussed under presence and absence methods, spatial methods, temporal 

methods and spatio-temporal methods for count data. 

1.6.1 Presence and absence methods 

 

In a classical linear regression model (Eq1), the dependent variable is 

assumed to be continuous, normally distributed and a linear function of a 

set of independent variables which may be continuous, categorical or a 

combination of the two.  Multiple regression, analysis of variance and 
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analysis of covariance come under the linear regression model and the 

parameters are estimated using ordinary least squares method.   
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Where β0 is the intercept, β1… βn are the co-efficients for independent 

variables and x1….xn are the independent variables, and errors, ε, are 

normally distributed.  These notations will be used in the rest of this 

chapter, and any additional parameters will be defined wherever required. 

 Linear regression methods are not suitable for non-normal continuous data, 

categorical data or count data.  Generalized linear models (GLM, Nelder & 

Baker, 1972) were introduced to overcome these limitations of classical 

linear regression.   
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There are two main components in GLM; the link function and an error 

distribution.  The link function is used to transform the mean of the 

dependent variables.  The transformed variable is a linear function of 

regression parameters.  The regression parameters and standard errors are 

estimated by specifying error probability distribution.  Logistic regression 

is the most commonly employed GLM for binary outcome data.  In logistic 

regression a logit link is used and a binomial distribution is assumed. 
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Machine learning (ML) methods such as neural networks and support 

vector machines have been developed for modelling binary outcome data.  

These methods are less frequently used in ecology or epidemiology due to 

the difficulty of biological interpretation (Elith & Graham, 2009).   

Models for Culicoides abundance or for the presence and absence of 

bluetongue have been developed mostly for Europe.  Preliminary spatial 

models for Bluetongue in Europe were aimed at delineating the areas where 

adult C.imicola could survive year round, or areas where overwintering of 

BTV was possible (Sellers & Mellor, 1993).  Logistic regression was used 

to predict the distribution of C.imicola by using historic monthly weather 

station data (which did not include rainfall) (Wittmann et al., 2001).  

Satellite imagery was used to predict C.imicola presence and abundance in 

Europe and North Africa using a discriminant analysis approach (Tatem et 

al., 2003).   

 

1.6.2 Time series analysis  

 

Ordinary least square methods discussed in the earlier section (Eq1) can 

also be used to model time series data with independent and normally 

distributed errors by including a time component with uncorrelated errors 

(Eq 3).  Residuals of time series regressions are rarely uncorrelated, 

however, especially when present events depend upon past events, as they 

do in the case of infectious diseases (Selvaraju et al., 2013)  

 



16 
 

)2,0( ~

(3)                                                       0 2211





Niid

xxxYt

t

tntntt 

Errors in time series regressions are split into two components, one time 

dependent (autoregressive) and one not (and assumed normally distributed) 

(Eq. 4).  In combination, therefore, the total error term tends to be 

heteroscedastic in time series models rather than homoscedastic (the 

assumption in standard linear regression) 

 

 

In purely autoregressive models the past observations (t-1, t-2, t-3 etc.) are 

used as dependent variables and the errors are normally distributed (Eq 5).   

There are examples in other VBD’s which incorporate temporal 

dependency in the time series with Gaussian outcomes (Luz et al., 2008) 

using the popular Box-Jenkins methodology (Helfenstein, 1986).  

Autoregressive time series models have been extended to include weather 

variables (Gharbi et al., 2011; Helfenstein, 1991) and their lags, and can 

also account for seasonality using seasonal autoregressive models (Zhang 

et al., 2010).    

In vector borne diseases, the observations are not only dependent on past 

observation, but also influenced by environmental variables.  Purely 

autoregressive models are best suited for data which are known to be drawn 
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from only endogenous processes (Keitt et al., 2002).  The role of 

temperature and/or rainfall on malaria is well established (Clements et al., 

2009; Zhang et al., 2008; Zhou et al., 2004) by accounting for temporal 

autocorrelation of the dependent variable.  But, there are very few studies 

on bluetongue or other vector-borne animal diseases which establishes 

quantitative links with meteorological variables, accounting for temporal 

autocorrelation of the dependent variable.  In a study to disentangle the 

roles of temporal dependence and climate (Zhou et al., 2004), it was 

demonstrated that climate dominates over intrinsic factors (past cases of 

malaria), but once temporal dependence was accounted for (Singh & 

Sharma, 2002) the effect of rainfall on malaria became nonsignificant.  

Therefore failure to account for the temporal autocorrelation (as in malaria 

cases) can lead to selection of non-significant variables or the elimination 

of significant variables. 

(5)...21                  21  tptpttt yyycy   

 

In equation 5, c is constant, the various  s are autoregressive parameters 

and   t  is white noise (normally distributed errors). 

Autoregressive  time series methods are well established for Gaussian 

outcomes, whereas models for non-Gaussian count data are less developed 

in environmental epidemiology (Bhaskaran et al., 2013) and are very few 

in infectious disease epidemiology (Lu et al., 2009).   The methods for non-

Gaussian data (Eq 6) include GLMs (Generalized Linear Models) and other 
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non-parametric regression methods.  GLMs that incorporate temporal 

dependence as random effects (Eq 7) are referred to as GLMM 

(Generalized Linear Mixed Models).  In GLMs or GLMMs all parameters 

are estimated as fixed effects and estimated by maximum likelihood 

methods or quasi likelihood methods (to account for over dispersion).    
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1.6.3 Spatial analysis of count data 

 

Linear regression models (Eq 1) can also be used in analysis of spatial data 

by ignoring the spatial correlation which may lead to bias in estimates.  In 

disease epidemiology, observations which are nearer to each other tend to 

be more related than observations farther apart.  Presence of this spatial 

autocorrelation inflates model accuracy but also the estimated explanatory 

power of environmental predictors (Dormann et al., 2007).  Spatial 

autocorrelation can result from intrinsic biotic processes such as disease 

spread to neighbouring areas but can also be a problem if certain 

independent abiotic variables (with spatial structure) are omitted or not 

measured.  Ignoring spatial autocorrelation can also lead to undue 
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emphasising of non-significant relationships between the response variable 

and environmental variables. 

Spatial autocorrelation in epidemiological data 

Disease data are most often aggregated at a particular administrative level, 

and referred to as ‘polygon data’.  In rare experiments the data are collected 

on regularly spaced grids and are known as lattice data (Bivand et al., 

2008).  Neighbours can be defined by contiguity based methods or graph 

based methods.  Contiguity based methods involve a two-step process.  

First, neighbours are defined based on the adjacency matrix and second the 

weights are assigned to neighbours with which they share a boundary 

(Bivand et al., 2008).  The adjacency matrix for a graph (a graph is a set of 

points called vertices and a set of lines called edges) having n vertices is an 

nxn matrix whose (i, j) entry is 1 if the ith vertex and jth vertex are 

connected, and 0 if they are not.   In graph-based methods the polygon 

centroids are used to calculate the distance between two polygons.  The 

distance between two centroids is calculated using different triangulation 

methods (Bivand  et al., 2008). 

 The neighbourhood can also be defined using distance based methods. For 

example, in in the k-nearest neighbourhood method the k nearest points are 

considered as neighbours; however this method is most suitable for 

regularly spaced data and may not be suitable for irregular polygon data 

(districts) (Bivand  et al., 2008) which is more common in epidemiology. 

Spatial autocorrelation (SAC) can be detected by examining the residuals 

of non-spatial models using different methods such as Moran’s I, Geary’s 



20 
 

C and variograms (Bivand et al., 2008), widely used in geostatistics (Isaaks 

& Srivastava, 1989).  Moran’s I values show the presence and absence of 

SAC and range from -1 to 1 as follows; zero is complete independence, or 

absence of SAC;   1 is dependence or presence of positive SAC i.e. residual 

error values are more similar for observations that are close together;  -1 is 

presence of negative SAC where residual error values are less similar for 

observations that are close together. In epidemiological analyses, only the 

presence of positive SAC is plausible.  Moran’s I based correlograms plot 

Moran’s I values against distance for different distance bins.  As the 

distance increases the spatial autocorrelation decreases, reaching a value of 

zero where the observations are completely independent.  The values of 

Moran’s I can be tested for significance using statistical tests.  Variogram 

plots are the inverse of Moran’s I correlogram.   

Methods to account for spatial autocorrelation in count data 

Spatial autocorrelation in the residuals of non-spatial models can be 

accounted for using different methods (Dormann et al., 2007).  The 

Generalised Least Squares approach (GLS) (Venables & Ripley, 2002), 

which is a modification of the Ordinary Least squares (OLS) method, can 

be applied when the errors are correlated.  The errors can be treated with 

different correlation structures depending on the definition of neighbours.  

If the adjacency matrix is used for defining neighbours then the parameters 

can be estimated by GLS using a CAR (conditional autoregressive) (Keitt 

et al., 2002) or SAR (simultaneous autoregressive) model, equations 8 and 

9 respectively (Haining, 2003), which differ in whether or not they can 

handle the asymmetric covariance matrix.  The spatial neighbourhood 
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matrix contains spatial weights (W) and this matrix is symmetric (with 

zeroes on the diagonal and weights for the neighbouring locations on the 

off-diagonal which can be identical even after transposing) in a CAR model 

and the neighbourhood matrix can be asymmetric (with zeroes on the 

diagonal and spatial weights on the off-diagonal which will not be identical 

after transposing) in a SAR model.   There are three methods by which a 

SAR model can be specified.  In the first method, SAC in the response 

variable is accounted for using the spatial proximity matrix of the 

observations.  In the second method, SAC in the response and the predictor 

variable is accounted for in the model.  The response variable is not only 

dependent on the magnitude of covariates in the areas, but also on the 

covariates in the neighbouring areas.  In the third method, the errors are 

assumed to be dependent only on the neighbours and not on either the 

response or predictor variables. 
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If distance based measures are used to define neighbours (geostatistics) 
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then different correlation structures such as exponential, Gaussian or 

spherical can be specified (based on the semi-variogram) and estimated in 

a GLS framework (Eq 10).  In GLS the response variable is assumed to be 

normally distributed with a specific correlation structure. 
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Non-normal data can be modelled either by a Generalised Linear Model 

(GLM) (Eq 11) or by GLMM (Generalised Linear Mixed Model) with 

correlated errors (Eq 12).  
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In auto covariate based   GLM, an additional, distance-weighted covariate 

is included in the model, and the weights are assigned based on neighbours 

(Kaboli et al., 2006). The additional covariate (auto covariate) is calculated 
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based on the influence of neighbouring values on each particular location.  

Spatial Eigen Vector Mapping (SEVM) is also a modification of GLM, and 

here there is decomposition of the connectivity matrix into different Eigen 

vectors.  Those Eigen-vectors which reduce the spatial autocorrelation are 

used as predictors in a GLM model.   In ecological studies, when there is 

spatial dependence, and key covariates may be missing, the ML approach 

often leads to unsatisfactory estimates of the district level risk due to extra-

Poisson variation.  

1.6.4 Space-time analysis of epidemiological data 

 

 Analysis of space-time data in epidemiology has benefitted from advances 

in both modelling and geographical information systems.  Selection of the 

particular analytical method to use in any situation is also important and 

depends on a variety of factors such as the spatial and temporal scales of 

the data (spatial; local/regional/national and temporal; 

day/week/month/year), on data quality and data type (cases, outbreaks, 

mortality) (Robertson et al., 2010).  

Space-time analysis was initially aimed at testing for the presence of space-

time interaction, or the presence of clusters.  Detections of clusters in both 

space and time simultaneously are extensions of spatial cluster detection 

methods (Besag & Newell, 1991).   Interactions are said to occur when, for 

example, disease cases occur closer together in either or both of space and 

time than would be the situation without interaction, when cases would 

occur at random in both space and time. The demonstration of space-time 

interaction in infectious diseases helped to understand the spread of such 
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diseases into neighbouring areas (Waller et al., 2007).  In the case of non-

infectious diseases, it can help to identify any underlying geographical 

cause (for example, a restricted area of rare gas emission, or a local 

concentration of a chemical contaminant).  

Tests for the presence of space-time interaction using the null hypothesis 

of no-interaction fall into one of three types (Robertson et al., 2010); i) tests 

for space-time interaction, ii) Cumulative Sum (CUSUM) methods, and iii) 

scan statistics.  Space-time interaction tests include the Knox test (Paré et 

al., 1996), the Mantel statistic (Ward & Carpenter, 2000) or their 

modifications.  These statistical tests require individual case data (i.e. the 

location and timing of each individual infection).  In the Cumulative sum 

(CUSUM) method, the presence of an interaction is detected by a 

cumulative alarm statistic, which indicates change in an underlying process 

over a period of time.  Scan statistics (Kulldorff et al., 2007) are another 

class of method to test space-time interaction and often used to detect 

outbreaks in space and time. 

The methods discussed so far (clustering, space-time interaction) are not 

designed to quantify the relationship between the dependent and 

independent variables and hence may not be suited for making predictions 

in unknown areas.  The methods discussed in the spatial and temporal 

domain (linear, GLM or GLMM) can be extended in the space-time domain 

and used for making predictions in unknown areas.  Spatial and temporal 

autocorrelation parameters can be modelled as fixed parameters using 

maximum likelihood estimation in the frequentist domain or as random 

effects in the Bayesian domain (Clayton, 1996). 
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1.6.5 Bayesian methods  

 

Bayesian methods differ from maximum likelihood methods by inclusion 

of prior information about the parameters.  If the data are highly 

informative with a weak prior, then similar answers are generated as in the 

maximum likelihood approach (Bolker et al., 2009).  In the frequentist 

approach, the parameters such as the mean, variance and regression 

coefficients are fixed but unknown, and are calculated from the data.  In 

Bayesian methods, the parameters are not fixed but follow a statistical 

distribution.  The Bayesian way of estimating parameters can be 

demonstrated by giving the Bayesian equivalent of equation 1 for simple 

linear regression.   
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Y are the observed data and   the regression parameters.  The errors are 

normally distributed with mean zero and variance ( ).  The unknown 

parameters ( ) are drawn from a statistical distribution.  We can assign 
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informative priors for the parameters based on expert opinion or prior 

experiments or we can specify non-informative priors if there is no pre-

existing information about these parameters.  The complexity increases as 

the number of random effects increases, as in the GLMM models, and 

parameter estimation using maximum likelihood methods may lead to bias 

in estimates.  Bayesian inference can then be advantageous over frequentist 

methods. 

Although Bayesian methods have been well developed in spatial mapping 

of human diseases (Best et al., 2005; Lawson, 2013; Sanders et al., 2011), 

there are very few examples to date in veterinary epidemiology (Schrödle 

& Held, 2011).   In the current context Culicoides distribution data have 

been analysed using Bayesian methods (Sanders et al., 2011; Searle et al., 

2013). 

1.7 Aims and structure of the thesis 

 

The aim of this thesis is to understand the role of intrinsic and extrinsic 

factors in determining the severity of bluetongue outbreaks across South 

India using statistical models and to determine whether these models can 

contribute towards development of an early warning system for the disease 

at different spatial and temporal scales.  

Chapter 2 deals with the application of remotely sensed variables to 

discriminating presence and absence sites of bluetongue outbreaks using 

non-linear discriminant analysis.  The use of known absence data in 

endemic areas is highlighted in this chapter, and model results using them 

are contrasted with those of models that use only pseudo-absence data.  In 
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chapter 3, attempts are made to disentangle the role of intrinsic and 

extrinsic factors in driving annual and inter-annual variability of 

bluetongue outbreaks in Andhra Pradesh and to develop a temporal 

forecasting model for making future predictions.  In chapter 4 the influence 

of different hosts and breeds, land cover and climate on the severity of 

bluetongue outbreaks at district level is analysed, taking into account 

spatial autocorrelation.  Chapter 5 deals with the roles of spatial and 

temporal heterogeneity and climate in driving inter-annual variability of 

bluetongue outbreaks at the district level.  In chapter 6, Bayesian Network 

Modelling (BNM) is employed to identify the direct and indirect associates 

of bluetongue cases at the village level with host, land cover and climate 

variables.  The variables identified in the BNM model are then used to 

develop a predictive model of BTV severity in unknown areas.  Finally 

chapter 7 concludes by discussing the implications of the study for 

bluetongue control and the potential contribution of the models described 

here to the development of early warning systems for BTV. 
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2.1 Introduction 

 

Predictions of the presence and absence of Bluetongue outbreaks using 

logistic regression have been, and continue to be, employed at the district 

level in India (www.nadres.in).  There are more than eighty thousand 

villages in three states of South India (Andhra Pradesh, Karnataka and 

Tamil Nadu) and villages in close proximity can differ substantially in the 

severity of bluetongue outbreaks. Understanding the environmental 

conditions suitable for presence and absence of bluetongue at the village 

level is necessary for effective control and future surveillance.   In this 

chapter temporal Fourier processed remotely sensed variables are used to 

produce risk maps for bluetongue using a Non-Linear Discriminant 

Analysis approach (NLDA). 

Understanding the relationship between presence and absence of disease or 

its vectors and environmental variables is important in defining risk areas 

and making predictions in unknown areas (Rogers and Randolph, 2003; 

Palaniyandi 2012).  In the past, weather station data have been used for 

spatial and temporal predictions of many vector borne diseases including 

bluetongue (Calistri et al., 2003; Conte et al., 2003; Wittmann et al., 2001).   

Weather station data have their own advantages and limitations for such 

work.  The weather station data have coarser spatial resolution, but certain 

parameters like air temperature, air humidity and precipitation that have 

direct impact on the life history of different Culicoides species can be 

measured, though this is rarely done in the microhabitats actually used by 

adult insects (Purse et al. 2004).  More-over, the presence of only a few 

http://www.nadres.in/
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weather monitoring stations can, however, hamper the quantification of 

relationships between the vector and weather station environmental 

variables.  

A logistic regression model for C.imicola in the Iberian Peninsula using 

averaged climate data was extrapolated across the entire Mediterranean 

Basin by (Wittmann et al., 2001).   Conte et al., 2003 also used averaged 

climate data and a logistic regression approach to study the effect of climate 

on the presence of C.imicola in Italy.  They obtained an overall 75% correct 

classification but there was evidence of some misclassification due to 

geographical clustering.   

Remotely sensed variables have been used as environmental variables or 

surrogates of meteorological variables in spatial and temporal models of 

many vector borne diseases (Kalluri et al., 2007; Kitron1998; Kitron, 2000; 

Rogers & Packer 1993; Rogers et al., 2002).  Many such data are free and 

obviously cover much wider geographical areas in more detail than do 

meteorological station records.  There are many studies reporting NDVI 

(Normalized Difference Vegetation Index) as one of the important 

predictors in the models of bluetongue vector distribution and abundance 

(Baylis et al., 1998; Tatem et al., 2003).  However, when the models were 

used to predict the distributions of different vector species using remote 

sensed variables, different sets of variables were selected as there are 

differences in the life history requirements of different Culicoides species 

(Purse, Tatem, et al., 2004; Purse et al. 2012).   
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Presence and absence of a disease or vector is not only determined by the 

average values of environmental variables (remotely sensed or weather 

station data), but also often by their seasonality.  Seasonality is just as 

pronounced in tropical and subtropical countries such as India as it is in 

temperate and sub-temperate regions, although the obviously seasonal 

variables tend to differ (rainfall in the tropics and temperature in temperate 

regions).  Use of raw time series data (monthly remotely sensed variables 

or weather station data) is not advised because of serial correlation in the 

data.  Principal component analysis (PCA) (Eastman & Filk, 1993) is the 

most common technique in data ordination methods, but seasonality is lost 

(Hay et al., 1998; Rogers et al., 1996).  Temporal Fourier analysis (TFA) 

of remotely sensed variables (Scharlemann et al., 2008) overcomes the 

problem of serial correlation and also helps to capture the seasonality in the 

environmental conditions.  The results of TFA of any single data channel 

are no longer serially correlated and can be used as independent predictors 

or discriminating variables (although the TFA products of related channels, 

for example day- and night-time Land Surface Temperature, may be 

correlated).   The use of TFA imagery and their advantages have been 

discussed in mapping different vector borne diseases (Rogers et al., 1996) 

and bluetongue (Tatem et al., 2003). 

 

There are many Culicoides species reported from South India, of which 

C.imicola (Mellor et al., 2000), C.brevitarsis (Muller et al., 1982) and 

C.oxystoma (Mellor et al., 2000) are proven vectors of the bluetongue virus.  

The habitat requirement for each species varies and in the absence of 
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species’ distribution data it is difficult to understand the role of different 

environmental variables in determining their abundance which ultimately 

causes outbreaks in South India.  Most (60 out of 80) of the constituent 

districts of South India have reported bluetongue outbreaks and, among 

them, the villages in each district may not be equally favouring the 

transmission because different species may be involved, each requiring 

different environmental conditions for breeding and subsequent virus 

transmission.  Thus, in endemic countries in which different species of 

Culicoides are involved in transmission and different environmental factors 

play a role, there is a possibility of the presence of more than one 

epizootiological system.  Therefore, it is important to understand the role 

of environmental variables in discriminating between the different systems.  

In this chapter, a Non-Linear Discriminant Analysis (NLDA) is applied to 

bluetongue presence and absence data in three South Indian states with the 

following objectives: 

1. To identify the variables which discriminate between presence and 

absence of bluetongue outbreaks in South India. 

2. To investigate whether different environmental conditions operate in 

South India to discriminate between presence and absence of 

bluetongue outbreaks (more than one presence and absence groups)? 

3. To test whether known but sparse absence data or pseudo-absence data 

give better accuracy in presence/absence models.  

4. To develop a BTV risk map for South India to help in future 

surveillance. 
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2.2 Materials and methods 

2.2.1 Bluetongue presence and absence data 

 

Bluetongue presence and absence data were collected from three states with 

different reporting systems.  Data for Karnataka were obtained from the 

State Animal Disease Monitoring and Surveillance, Bangalore and also 

from NIVEDI (National Institute of Veterinary Epidemiology and Disease 

Informatics).  Records in the NIVEDI database are only of Polymerase 

Chain Reaction (PCR)-confirmed BTV virus presence in field-collected 

samples.  The data for Andhra Pradesh were obtained from the State 

Department of Animal Husbandry, Hyderabad.  Data for Tamil Nadu were 

obtained by visiting different districts which were known from historical 

records to be endemic (Tirunelveli, Madurai, Karur, Dindigul, and Erode).  

For other districts in Tamil Nadu, the data were collected from the Central 

Referral laboratory (CRL), Chennai.   There was no information on the 

diagnostics tests performed from the records of Tamil Nadu (both from 

CRL and during visits to districts).   All presence records for bluetongue 

were obtained for the years 1997 to 2011.  No village level recording could 

be found before 1997.  In the past there was lack of sensitive diagnostics 

(like PCR) for detection of BTV virus or antibodies (competitive ELISA).    

The records for Karnataka and Tamil Nadu contained only names of 

disease-affected villages whilst the records for Andhra Pradesh had the 

number of cases in each village.  Only simple presence and absence records 

were considered in this analysis for all the three states, but case data for 

Andhra Pradesh was analysed as discussed in Chapter 6.  The village names 

were first matched with the village databases for all the three states and the 
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village centroids were then extracted for all the presence and absence 

records from the village level shape files (obtained from the Survey of India 

through an individual license).  There were in total 769 villages in all the 

three states of South India that recorded BTV presence at some point in 

time between 1997 and 2011from these data sources and 59809 villages not 

reporting bluetongue at all.  A village might have no records of BTV 

outbreaks either because it is genuinely disease-free (because conditions 

there are unsuitable for BTV; a genuine absence site) or because the village 

is environmentally suitable for BTV but has never experienced any 

outbreaks purely by chance (a potential presence site, recorded as absence), 

or because outbreaks have occurred there but have not been reported for 

various reasons (a genuine presence site, but recorded in the database as 

absence).  Because there is a variety of reasons for the recording of absence 

of BTV in the village database, the presence/absence models were run 

twice, once using the database-recorded village absence sites and once 

using ‘pseudo-absence’ data generated by a relatively standardised method 

in the eRiskMapper software employed.  Pseudo-absence points are 

generated by many presence/absence packages because most databases of 

animal or plant species or diseases fail to record genuine absences (records 

are often based on data from museum collections of specimens); hence the 

absence data must be generated in one way or another.  In eRiskMapper the 

user is allowed to define both a minimum and a maximum distance from 

any presence site where pseudo-absence sites might be randomly selected.  

The minimum distance attempts to guarantee that no pseudo-absence site 

is so similar in environmental conditions to a genuine presence site that it 
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might actually be a suitable site for the species under study.  The maximum 

distance attempts to guarantee that pseudo-absence sites are not so different 

from any presence site that their data are unhelpful in distinguishing local 

presence and absence (for example it would be inappropriate to include an 

Arctic pseudo-absence site in a database for a tropical disease).  In the 

present models the minimum distance was set to 0.5 degrees of 

latitude/longitude (approximately 50-60 km at the equator) and the 

maximum to ten degrees.  However, the mask used to select pseudo absence 

sites were restricted to the three South India states and the adjoining states 

(Kerala, some parts of Maharashtra and Orissa). 

2.2.2 Remotely sensed variables  

In total, 50 temporal Fourier processed MODIS variables (at 1km spatial 

resolution) were used in the analysis (Scharlemann et al., 2008).  The 

temporal Fourier processing extracts the seasonal information of the 

remotely sensed variables and describes it in terms of the mean, the annual 

minimum and annual maximum, the amplitudes and phases of the annual 

(a1 and p1 respectively), bi-annual (a2, p2) and tri-annual (a3,p3) 

components of the signal and finally the variance.  The MODIS channels 

processed in this way were the MIR (Middle Infra-Red), daytime Land 

Surface Temperature (dLST), night time Land Surface Temperature 

(nLST), NDVI (Normalized Difference Vegetation Index) and the EVI 

(Enhanced Vegetation Index).   The NDVI is a measure of photo 

synthetically active radiation (PAR) and has been variously interpreted as 

an indicator, directly or indirectly of chlorophyll abundance, vegetation 

biomass, soil moisture and rainfall (Campbell, 2002).  MIR is correlated 
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with water content, surface temperature and the structure of vegetation 

canopies, especially in young forest re-growth stands (Boyd & Curran, 

1998). 

2.2.3 Non-Linear Discriminant Analysis Model (NLDA) description 

 

Non-linear discriminant analysis was carried out using a Windows based 

eRiskMapper package (David Morley, Luigi Sedda and David J Rogers, 

2011), based on the previous (non-Windows-based) software of Rogers 

(Rogers 1993; Rogers & Randolph 1993). 

Discriminant analysis is rather different from a number of other methods 

used to describe species distribution because it is a classification-based 

rather than regression-based technique.  The algorithm assigns each 

observation to one or other category in a mutually exclusive set of groups 

that encompasses the entire range of variability expected.  One classical 

application of discriminant analysis is the assignment to one or other of 

several hominoid lines of fossils of a newly discovered human-like skull or 

other body part.  The assumption made is that the new fossil must belong 

to one or other group and that all the groups considered in the analysis 

comprise the entire fossil history of humanoid apes (i.e. there are no 

missing groups in the pre-existing recorded fossil record).  If the new fossil 

cannot be assigned to any existing group with any certainty then it is often 

referred to as a ‘missing link’, and a new group (based on a sample of one) 

is defined, to contain it. 

The assumptions of linear discriminant analysis, the simplest form of this 

technique, are as follows: 
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1. There must be a minimum of two or groups. 

2. The number of observations in each group can be a minimum of two 

but in practice should be a minimum of at least 30, to define each group 

sufficiently precisely (this minimum increases with the number of 

variables used to define each group). 

3. The number of discriminating variables should be no more than two 

fewer than the number of observations (n-2, where is n number of 

observations).  Again in practice the number of observations should 

exceed the number of variables by a much bigger margin than this, since 

a model with almost as many variables as observations will be near 

perfect (since each variable can capture one of the observations) but 

will have no residual degrees of freedom for any significance testing. 

4. The covariance matrices for each group (e.g. presence and absence) are 

the same (there is an important difference between LDA and NLDA in 

this respect, discussed later). 

5. Each group has been drawn from a population with a multivariate 

normal distribution of all discriminating variables, which are usually 

continuous (dummy-coded categorical variables may also be used with 

care).  

The main aim of discriminant analysis is to use the covariance matrix to 

calculate a discriminant function to assign group membership to which the 

new observations will be assigned.   

The discriminating variables are used to predict the group to which the 

particular observation belongs based on the location of the observation with 

respect to the group centroid.  The Mahalanobis distance (Eq. 1) is 
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commonly used to classify group membership and was used in this study. 

The Mahalanobis distance, MD, (D2 in equation 1) is a covariance adjusted 

measure of difference between sets of environmental conditions in this 

application; small values indicate similar conditions and large values 

dissimilar ones (Rogers 2015).   It is calculated as follows: 
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The subscripts refer to group 1 (for BTV presence) and 2 (for BTV 

absence),   1X and 2X  are the mathematical vectors of the mean values of 

the discriminating variables defining each group (i.e. their centroids), d= 

) - ( 21 XX and 1
WC  is the inverse of the within-groups covariance 

(dispersion) matrix.  Once D2 is calculated between any observation (where 

the mean vector in equation 1 is replaced by the vector of values for that 

particular point) and the centroids of each group in turn, an observation is 

classified as belonging to that the group to which it has the smallest D2.  

The group with smallest D2 is the one in which the environmental 

conditions most closely resembles the profile of this observation.  If D2 is 

large then the profile of this observation may match poorly to this group, 

but may be better than its match to any other group.  

We assume that each group comes from a population with a multivariate 

normal (MVN) distribution.  Most of the observations will be clustered near 

the centroid and the number of observations will be less as we move away 

from the centroid.  By knowing the distance from the centroid, we can know 
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the proportion of the group’s population that is closer and the proportion 

that is further away.  The proportion of the group’s population that is further 

away from the centroid is the probability that an observation located that 

far away actually belongs to the group.  Classification of an observation 

into the closest group according to D2 assigns it to the group to which it has 

the highest probability of belonging.   

The D2 may be turned into the posterior probability of belonging to the 

different groups in the analysis. This is achieved effectively by inserting 

the MD into the equation for the standard normal distribution of which the 

clusters are samples, using the following equations 
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Where )/1Pr( x  is the posterior probability that observation x  belongs 

to group 1 and )/2Pr( x is the posterior probability that it belongs to 

group 2.  The exponential terms in the equation 2 are those of the 

multivariate normal distribution defining groups 1 and 2; all other terms of 

the multivariate distributions are the same in the numerator and 

denominator and therefore cancel out.    
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1p  and 2p are the ‘prior probabilities’, that is, the probabilities with 

which any observation might belong to either group given prior knowledge.  

If there is no prior information about the observation then it is common to 

assume equal prior probabilities.  The assumption of equal prior 

probabilities is ensured by selecting equal numbers of presence and absence 

observations in the models (selection of bootstrap samples). 

NLDA and Clustering 

One of the assumptions of discriminant analysis is that all groups have the 

same covariance.  This is usually violated in species’ distribution examples 

and it is necessary to adapt the equations to allow for different covariance 

of the different groups (presence and absence in the simplest case).  This is 

shown in Eq 3. Where Ci is the group-specific rather than common 

covariance matrix, and Di the corresponding MD.  The line of equal 

probability between the presence and absence groups in multi-variate space 

is now no longer linear, and so the technique is now described as non-linear 

discriminant analysis (NLDA). 
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Where || 1C   and || 2C  are the determinants of the covariance matrices 

for groups g=1 and 2, respectively (Tatsuoka & Lohnes 1988). 

Another commonly encountered problem is that either presence or absence 

cluster (or both) is not multi-variate normal.  To overcome this problem the 

user of eRiskMapper is allowed to divide the observations into a number of 

clusters each for presence and absence using the k-means cluster algorithm.  

This algorithm essentially makes a series of clusters each for presence and 

absence observations, each of which is closer to multi-variate normality 

than the original group from which those observations were drawn.  Thus 

clustering allows the requirement of NLDA to be met, of a MVN 

distribution for each class to which observations may be assigned.  The 

number of groups (g in equation 3) then increases to the total number of 

clusters (presence + absence) selected. 

Variable selection 

Identification of variables which are important in discriminating presence 

and absence of any disease is a critical step in NLDA.   eRiskMapper uses 

a forward step-wise procedure whereby variables are included one at a time 

on the basis of their ability to improve discrimination of the groups within 

the dataset above that of any other variable not yet included in the selection 

procedure.  The discriminating criteria may be selected from a small group 

by the user, and these criteria include AIC, AICc, F-test, Mahalanobis 

distance, AUC, kappa (details of which are explained later).  eRiskMapper 

automatically chooses up to ten variables in each model although not all ten 
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need be used in fitting the data (for example the AICc criterion may suggest 

a smaller number, to avoid over-fitting) 

Variable selection criteria 

In this study the AICc (corrected Akaike Information Criteria) (Hurvich & 

Tsai, 1989) was used as the selection criteria for including a variable by the 

forward step-wise method, for eventual use in modelling.  If inclusion of 

an additional variable decreases the AICc by more than a threshold value 

(5 AICC units) then the variable is included; if less then it is not.   

Bootstrapping 

Sparse datasets are very common in species’ and diseases’ distribution 

modelling.  Bootstrapping is one of the methods which can be employed on 

sparse data.  It examines the likely importance of variability within the 

training set on overall model predictions.  Thus, for example, if several 

bootstrapped models give very different results, the training set itself must 

be very variable and it is therefore highly unlikely that it captures the full 

range of conditions in which the species occurs in nature.  If, on the other 

hand, the bootstrapped models give more or less similar answers, then it is 

likely that the training set represents the full range of conditions in nature.  

Thus it is imagined that the relationship between reality and the training set 

is the same as that between the training set and its bootstrapped samples.  

We do not know a priori the nature of the first relationship here, but we 

can investigate it by exploring the second relationship.  In this study, 100 

bootstraps were generated and predictions were made for each bootstrap 

and combined to get the average prediction, the final risk map.  In each 
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bootstrap 200 points were selected for presence and 200 points for absence 

groups.  The arrangement of samples to have equal number of presence and 

absence observations in each bootstrap produces model outputs with 

greatest accuracy (McPherson et al., 2004) 

Accuracy and Validation statistics 

Different accuracy statistics such as sensitivity & specificity (Congalton, 

1991, Fielding and Bell, 1997) or Kappa (Landis & Koch, 1977; Robinson, 

2000; Rogers, 2006), were computed for each bootstrap model and the 

average accuracy statistics of 100 bootstraps presented.  Sensitivity 

measures the proportion of actual presence sites predicted as presence and 

specificity measures the proportion of actual absence sites predicted as 

absence.  Kappa (k) is an index of agreement that is often used to assess 

model accuracy and varies between -1 (complete disagreement between 

predictions and observations) to 1.0 (complete agreement).  Kappa=0 when 

the predictions are no better than random (thus some sites are predicted 

correctly).  Kappa values of <0.4 indicate poor models, of between 0.4 and 

0.75 good models, and of greater than 0.75 excellent models (Landis and 

Koch 1977). 

Other accuracy statistics such as AUC (Area under Curve) and Producer’s 

and Consumer’s accuracies were also calculated for the 100 bootstrap 

models.  The percentage of all known sites (both presence and absence) 

correctly classified by the model gives the Producer’s Accuracy and the 

Consumer’s accuracy is the percentage of model predictions (presence and 

absence) that are correct.  The kappa, sensitivity and specificity values were 
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also calculated for the test data (hold out) for each bootstrap and the average 

validation statistics calculated.   

Three different sorts of models were run.  In the first model (Model 1 

series), the villages with no reported BTV outbreaks during the study period 

were taken as the absence sites; this model was run with one presence and 

two absence clusters.  In the second (Model 2 series) pseudo absence data 

were generated and used as described in the Materials & Methods section, 

again with one presence and two absence clusters.  Model 3 series also used 

pseudo-absence data, and three presence and three absence clusters.   

2.3 Results 

 

Average accuracy statistics for the three models (Table 2.1) show that 

Model 1 was the worst and Model 3 was marginally better than Model 2 

(kappa was the same, but sensitivity and specificity were slightly higher).  

Similarly the average validation statistics of model 1 is worst among the 

three models.  Model 3’s kappa value indicates a slightly worse fit than 

Model 2 but its sensitivity and specificity again were marginally higher 

than Model 2’s.  The following section therefore gives details of the single 

best bootstrap model from the Model 3 series.  It should be emphasised that 

any single model provides only a ‘snapshot’ of the information contributing 

to the overall final risk map, the average of 100 model outputs, each with a 

different bootstrap sample and each possibly with a different set of 

predictor variables.  
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2.3.1 Single best model results 

 

The mean values of the predictor variables in the best single Model 3 

bootstrap model is shown in Table 2.2 with the key for its variables in Table 

2.3.   The presence clusters (P1, P2 & P3) and absence clusters (A1, A2 & 

A3) are arranged row wise and the columns (1-10) represents the variable 

number as per their order of selection (an indication of their importance in 

the model).  The last column (11) indicates the sample size of each cluster.  

Table 2.2 shows that bluetongue occurs in areas with low values of variance 

and bi-annual amplitude of night time land surface temperature (variance 

=9.18 vs 12.76, bi-annual amplitude = 1.32 vs 1.71, bi-annual phase =3.28 

vs 3.52) than in areas with seasonally variable night time land surface 

temperature.  However, high values of the annual and tri-annual phases of 

nLST (annual=5.23 vs 5.18 and tri-annual phase= 1.25 vs 1.13) i.e. later 

seasonal peaks of night time temperature favour bluetongue transmission.   

The areas with high NDVI (mean 0.41 vs 0.46) and EVI (mean =0.26 vs 

0.28), reflective of dense forest environments, do not favour bluetongue 

transmission.   

Comparing the roles of different Fourier variables in each presence and 

absence cluster shows slightly different results when compared to mean 

values.  For example, nLST variance is higher in P2 compared to A2 and 

A3 (variance = 11.0 in P2 vs 7.5 and 3.0 in A2 & A3 respectively), which 

is in contrast to the overall means for the presence and absence sites for this 

variable (overall, nLST variance is lower in presence than in absence sites).  
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Similarly, the tri-annual phase and annual phase of nLST is lower in P1, P2 

and P3 compared to A2 and A3.  

The model accuracy matrix (also called a ‘confusion matrix’) for the best 

model is shown in Table 2.4.  The matrix shows the observed and predicted 

category membership.  In one presence cluster (P1), there were 62 observed 

absences and 52 were assigned to this category correctly and only 2 

observations were assigned to the absence category.  Likewise, out of a 

total 200 presence points, 32 were misclassified (only 3 were misclassified 

in the absence category) and among 200 absence points, only 11 points 

were misclassified.   

 The overall accuracy result of this best model is shown in Table 2.5.  The 

Producer’s and Consumer’s accuracy are very high (>80%) for all the 

categories except for the presence 3 category which had 67.4 % 

Consumer’s Accuracy.  In such a Table some misclassification errors are 

more serious than others.  For example, from the Consumer’s point of view 

an absence site belonging to one cluster but assigned to another absence 

cluster is a less serious error (since both clusters refer to absence) than one 

where the site is assigned to a presence cluster.  If we combine all presence 

and all absence clusters before calculating these statistics, the overall 

Consumer’s accuracy for this model is 96.6% for predicted presence sites 

and 98.5% for predicted absence sites.  In other words, a user of this map 

can have fairly high confidence in the predictions it has made. 
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2.3.2 Averaged bootstrap model results 

 

The final risk maps for the three different models (in each case the average 

of 100 bootstrapped sample models) are shown in Fig. 2.3 and the top ten 

variables are presented in Table 2.6.  The rainbow plots (Rogers, 2006) 

showing the relative importance of all predictors in all 100 models are 

shown in Fig. 2.2.  The top ranked variable in the Model 1 series is the 

maximum night time land surface temperature and in the Model 2 series is 

the minimum night time land surface temperature.  In Model 3 the top 

variable was the tri-annual phase of night time land surface temperature.  

Except for one NDVI variable each in Model 1 and Model 3, temperature 

variables dominated in all the model series. 

The final risk map for the Model 1 series (Fig. 2.3) is strikingly different 

from those of the other two models, and indicates large areas of high risk 

mainly in Andhra Pradesh.  The Model 2 and Model 3 series of models, 

that were much more accurate in validation, predict larger areas of high risk 

across all three states, but correctly predict low risks in the Western areas 

(Western ghat forest region),  Northern parts of Karnataka, North and a few 

North-Eastern and Central  parts of Andhra Pradesh (Eastern ghat forest 

regions).   

The distribution of the three presence clusters for the best model in the 

Model 3 series is shown in Fig. 2.4.  Rather surprisingly, the clusters each 

seem restricted to a different state.  Cluster 1 (red dots) is mostly in Andhra 

Pradesh, cluster 2 (blue) is mostly in Karnataka and cluster 3 (grey) is 

mostly in Tamil Nadu.  Such a restriction of clusters (based on 
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environmental variables) to particular states indicates that the 

environmental conditions of those states differ consistently one from the 

other.  It is possible that such environmental conditions in turn determine 

rather different epidemiologies of BTV in the three states perhaps, for 

example, involving different key vector and/or host species.  

This result also highlights the potential danger of extrapolating any model 

based on one state’s data to other, even adjacent states that may (and in the 

present case clearly do) experience different environmental conditions. 
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Figure 2.1: Maps of potential explanatory discriminating variables affecting presence and absence of bluetongue in South India:  

(A)Maximum day time LST; the maximum temperature is less along the western region (B) Mean NDVI; the NDVI is high (darker green) 

along the western ghat region and in a  few areas in Tamil Nadu, Central and North-Eastern Andhra Pradesh  and (C)Triannual amplitude 

day time LST; the tri-annual amplitude of  temperature is low(white to light pink color) along western region and high in other regions(dark 

pink to blue). (Scharlemann et al., 2008).  

  

 

A B C 
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 Kappa Sensitivity Specificity 

Model 1    

Accuracy 

statistics 

0.54± 0.048 0.79± 0.033 0.74 ± 0.037 

Validation 

statistics 

0.20 ± 0.039 0.69 ± 0.094 0.66 ± 0.027 

Model 2    

Accuracy 

statistics 

0.84 ± 0.036 0.93 ± 0.02 0.94 ± 0.014 

Validation 

accuracy statistics 

0.67 ± 0.063 0.87 ± 0.062 0.90 ± 0.011 

Model 3    

Accuracy 

statistics 

0.84 ± 0.026 0.97 ± 0.013 0.96 ± 0.013 

Validation 

accuracy statistics 

0.64 ± 0.035 0.88 ± 0.069 0.91 ± 0.012 

Table 2.1: Accuracy and validation accuracy statistics (Kappa, sensitivity and 

specificity) for the three model series. See text for the conventional interpretation 

of the values of kappa. Model 2 and 3 have excellent performance on the training 

set compared to model 1. Model 1 performed poorly on the validation set 

compared to model 2 and 3.  Overall Model 3 performed marginally better than 

the model 2. 
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 1 2 3 4 5 6 7 8 9 10 Sample 

Size 

P1 7.27 1.5 303.05 3.26 0.24 1.26 4.87 0.39 21.90 308.09 62 

P2 11.0 1.31 303.66 3.32 0.25 1.25 5.35 0.40 33.36 310.18 103 

P3 7.2 1.03 301.08 3.21 0.30 1.23 5.52 0.47 26.97 308.42 35 

A1 15.56 1.95 301.73 3.54 0.24 0.96 5.32 0.41 45.26 309.27 144 

A2 7.5 1.22 298.82 3.34 0.34 1.65 5.66 0.54 20.25 304.61 32 

A3 3 0.87 297.54 3.62 0.45 1.47 3.74 0.70 9.37 301.11 24 

Mean P 9.18 1.32 303.02 3.28 0.26 1.25 5.23 0.41 28.69 309.22 200 

Mean A 12.76 1.71 300.76 3.52 0.28 1.13 5.18 0.46 36.95 307.54 200 

Table 2.2: Mean values of the top ten ranked variables from the best bluetongue model with lowest AICC among the 100 bootstrap models. 

The mean values for the top ten variables for three presence (upper rows) and three absence clusters (lower rows). The last two columns 

show the mean values for Presence (P) and Absence (A) respectively. See Table 2.3 for the key to variable names.
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Variable Expansion 

1 nLST variance, degrees K2 

2 Bi-annual amplitude of nLST, 

degrees K 

3 Minimum dLST, degrees K  

4 Bi-annual phase of nLST, decimal 

month (0 = January)  

5 Mean EVI 

6 Tri-annual phase of nLST, 

decimal month (0 = January) 

7 Annual phase of nLST,  decimal 

month (0 = January) 

8 Mean NDVI (no units) 

9 Variance of dLST, degrees K2  

10 Mean of dLST, degrees K  

Table 2.3: Key to variable names for the best model among the 100 bootstrap 

models. 
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Model rank Top ten Variables in 

Model 1 

Top ten Variables in 

Model 2 

Top ten Variables in 

Model 3 

1 Maximum nLST Minimum nLST Phase of tri-annual 

cycle of nLST  

2 Maximum dLST Phase of triannual 

cycle nLST  

Variance of nLST  

3 amplitude of biannual  

dLST 

Variance nLST  Amplitude of bi-

annual cycle of nLST  

4 Amplitude  of biannual  

nLST 

Minimum dLST  Minimum nLST  

5 Mean of dLST Phase of triannual 

cycle of dLST 

Maximum dLST  

6 Amplitude of tri-annual  

nLST  

Mean MIR Minimum dLST  

7 Phase of biannual cycle 

of dLST  

Phase of tri-annual 

cycle of MIR 

Phase of tri-annual 

cycle of dLST  

8 Phase of annual  cycle of 

NDVI 

Mean nLST  Variance of dLST  

9 Phase of biannual cycle 

of nLST  

Phase of biannual 

cycle of nLST 

Mean of dLST  

10 Minimum nLST  Maximum dLST Phase of tri-annual 

cycle of NDVI 

Table 2.4: Mean ranks of the top ten variables from all the 100 bootstrap 

models in the three Model series, 1, 2 and 3. 
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Figure 2.2:  Graphical representation (‘rainbow plots’) of the ranks of predictor variables to show how often any particular variable was 

selected across the 100 bootstrap models for the Model 1, 2 and 3 series of models.  Each row i these figures refers to a single bootstrap 

model (arranged in rank order, with the best model at the top), and each column to one of the predictor variables.  In any single model 

the top predictor variable is colour coded red, the second most important variable is coloured orange and so on, on a rainbow colour 

scale (hence the description ‘rainbow plot’ for such images) – see legend in each plot for the colours.  There is a predominant red line ( 

phase of nLST  tri-annual cycle) in Model 3, indicating not only that this variable was frequently selected, but also that it was often selected 

first in the various bootstrapped models.  There are fewer signs of an overall dominant variable in the other two plots. 
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  Predicted category 

Observed 

category 

 P1 P2 P3 A1 A2 A3 Tot. 

P1 52 5 3 0 2 0 62 

P2 9 87 7 0 0 0 103 

P3 1 4 29 0 1 0 35 

A1 1 1 0 139 2 1 144 

A2 0 1 4 0 27 0 32 

A3 0 0 0 0 1 23 24 

 Tot. 63 98 43 139 33 24 400 

  

Table 2.5: Model accuracy matrix of the best model (pseudo absence with 3 

presence and absence clusters each) among 100 bootstrap models.  Model 

accuracy matrix of the best model (pseudo absence with 3 presence and absence 

clusters each) among 100 bootstrap models.   The observed categories are in rows 

and predicted categories in the column.  For a perfect model fit, all the numbers 

should be on the diagonal, with no off-diagonal entries. P1-P3 is the presence 

categories and A1-A3 is the absence categories. 

Category %Corre

ct 

%Producer’

s Accuracy 

%Consumer’

s Accuracy  

P1 83.87 83.87 82.54 

P2 84.47  84.47 88.78 

P3 82.86 82.86  67.44 

A1 96.53 96.53 100 

A2 84.38 84.38 81.82 

A3 95.83 95.83 95.83 

Table 2.6: Overall accuracy statistic for the best model among 100 bootstrap 

models.  The overall kappa accuracy of this model is 0.86 and AUC: 0.9987.
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Figure 2.3: Risk map for bluetongue in south India using Fourier processed MODIS variables with (A) Model 1 ( known absence with 1 

presence and 2 absence clusters), (B) Model 2 (pseudo absence with 1 presence and 2 absence clusters) and (C)Model 3 ( pseudo absence 

with 3 presence and 3 absence clusters). The probability of suitability is on a scale from zero to one.  Probabilities from 0.0 to 0.49 are 

coloured green (darker to lighter green) indicating predicted absence of disease.  Probabilities from 0.50 to 1.0 are coloured yellow 

through dark red indicating conditions predicted suitable for bluetongue.

0.0      0.1     0.2     0.3     0.4      0.5     0.6     0.7     0.8      0.9     1.0  

Probability of suitability 

A B C 
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Figure 2.4: (A) Distribution of clusters in one of the Model 3 series of models, 

with 3 presence and 3 absence clusters. The absence clusters are shown in white.  

Notice that each cluster is relatively restricted geographically, one to each state.  

(B) Risk map developed with Model 3 series of models with bluetongue presence 

points (blue dots).  

  

2.4 Discussion 

 

Although there is high seroprevalence of bluetongue in India, with regular 

outbreaks occurring in South India, there are no studies to identify risk 

areas at the village level.  Most studies concentrate on the molecular aspects 

of the virus or sero-prevalence.  The district level forecast system predicts 

the most likely occurrence of bluetongue in districts and there is no risk 

map at village level.  The risk map generated from this work using 

temporally Fourier processed remotely sensed variables discriminates 

between the presence and absence areas with high model accuracy for both 

training and test data.   

A B 
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Overall the model with pseudo absence points and with three presence and 

three absence clusters performed better than the other two models 

considered here.  The model based on known absence points (villages never 

recording a BTV outbreak) gave a poor fit compared to models with pseudo 

absence points.  The reason for this is not completely clear, but several 

suggestions were given in the Introduction to this Chapter.  It is possible 

that the villages are suitable for BTV but simply, by chance, have not 

experienced BTV yet.  Or they may have experienced unrecorded outbreaks 

of the disease.  The minimum distance rule used to generate pseudo-

absence data means that absence sites are environmentally more different 

from any presence site than are likely to have been the absence villages in 

the original dataset – some of which may have been very close to presence 

villages, both geographically and environmentally.  Selecting pseudo-

absence sites in this way may artificially inflate overall model accuracy 

(because absence sites are all very different from presence sites; hence 

discriminating the two sorts of sites will be easy), and this should also be 

considered when comparing models with different sorts of absence sites.  

The averaged bootstrap model accuracy (sensitivity =0.97, 

specificity=0.96) is very high and the validation statistics on “out of fit” 

test data (sensitivity =0.88 and specificity=0.91) are also very good 

considering the very different environmental conditions across the three 

states under study.  Most of the models for predicting bluetongue or 

C.imicola presence and absence in other countries have been validated 

internally and the percentage of correct classification ranged from 75% to 
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95% (Calistri et al., 2003; Conte et al., 2003; Tatem et al., 2003; Wittmann 

et al., 2001). 

In all three model series, temperature variables were predominant in the 

highest ranked variables (Table 2.4).  The selection of temperature 

variables in discriminating presence and absence areas is as expected 

because temperature not only influences the different life stages of 

Culicoides, but also influences the extrinsic incubation period.  The higher 

values of nLST variance in the P2 cluster compared to A2 and A3 (Table 

2.2) shows the influence of temperature between the presence and absence 

groups, and therefore comparing overall means of a single variable of the 

presence and absence groups can be misleading.  Instead it is the unique 

combination of variables (not the value of any single one) in each group 

that tends to determine disease presence and absence.  The presence of 

different environmental conditions may be a contributing factor for 

presence of different epidemiological systems along with diversity of hosts 

and breeds.  The detection of different groups is also supported by the fact 

that there are different Culicoides species identified in each state and 

different serotypes detected in the past (Sreenivasulu et al., 2004).  

However, studies on understanding the role of Culicoides species in 

transmitting different serotype/strains is lacking.    The presence of three 

distinct presence and absence groups (Fig. 2.4 a) which corresponds to 

three states under study is supported by the fact that major areas of these 

states fall under different agro-ecological zones of the country.  The present 

study also stresses the usefulness of Fourier variables in discriminating 

between the different areas of endemism of the disease.   
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NDVI variables were important in describing the distribution of C. imicola 

in temperate regions (Baylis et al., 1998;  Baylis et al., 1999; Baylis et al., 

2001; Tatem et al., 2003) whilst (Purse, et al., 2004) found that different 

variables were selected for each vector species modelled (NDVI for 

C.pulicaris &  C.imicola and temperature variables for C.obsoletus group 

and C.newsteadi).  However, NDVI along with minimum LST explained 

more variance (67%) compared to a model with just minimum LST 

(explaining only 40% of the variance) in a C.imicola abundance model 

(Baylis, et al., 1999).  In another study the mean of Middle Infra-Red 

reflectance (MIR) was the most important variable in determining the 

presence of C.imicola, but NDVI was selected in an abundance model 

(Tatem, et al., 2003).  In the present study, NDVI is higher (Fig. 2.1B) in 

areas where bluetongue has never been reported (Fig. 2.4b).  The best risk 

map developed here shows that the areas along the Western ghat (Fig. 2.3C) 

are less suitable for bluetongue transmission.  This region is covered by 

forest, has fewer sheep, and also fewer movements of livestock from other 

regions of South India than do other parts of the state.  The Western ghat 

regions have not reported bluetongue outbreaks in the past twenty years or 

so (district level NIVEDI database on livestock diseases and Fig. 2.4B).  

The Eastern ghat region is similar in many respects to the Western ghat 

region and is also predicted by the model to be at very low risk of BTV 

infections.  There is a common belief among researchers and field 

Veterinarians that bluetongue is endemic in the whole of South India, but 

both the data and the risk maps show that there are areas within each state 

that are very unlikely to experience BTV outbreaks because their 
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environmental conditions are so unlike any of the sites from which BTV 

has been recorded to date.   Although there is sero-prevalence of bluetongue 

in Kerala (Ravishankar et al., 2005), which forms part of Western Ghat, no 

clinical outbreaks of the disease have been reported in the past 20 years.  

One of the reasons for the absence of clinical disease is due to low sheep 

population and high goat population (goats are relatively resistant to BTV 

compared to sheep or due to host specificity of potential vectors) in Kerala.   

The map of the presence clusters shows that a considerable area is covered 

by each cluster which is, nevertheless, relatively distinct geographically 

from the other clusters.  This suggests that disease transmission may be 

different in the different areas, perhaps involving different vectors or vector 

complexes, different hosts and possibly different environments for 

transmission, or any combination of these effects.  Thus there is an urgent 

need for systematic vector and host competence studies in the region.   In 

conclusion, discriminant analysis throws an interesting light on potentially 

different epidemiological situations, and raises relatively precise questions 

for future studies to address. 
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Chapter 3 

Role of intrinsic and extrinsic 

factors in driving temporal 

patterns in bluetongue outbreaks 

in India: a Bayesian time series 

regression approach 
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3.1 Introduction 

 

In Africa and India,  bluetongue occurs every year with varying severity 

(Coetzee et al., 2012; Prasad et al., 1992).  Multiple serotypes circulating 

in India (Sreenivasulu et al., 2003) and Africa (Coetzee et al., 2012) are 

thought to be transmitted by many different species of Culicoides (Ilango, 

2006).  Limited knowledge of the vectorial capacity of indigenous species 

limits our understanding of the epidemiology of disease in India.  

Elsewhere, annual variability of bluetongue outbreaks has been linked to 

the effects of previous climate events (Purse, et al., 2004) while African 

Horse sickness outbreaks have been linked to El-Nino (Baylis et al., 

1999b).   

In India, Andhra Pradesh is the state most severely affected by Bluetongue 

virus and its surveillance system is better than in the other states (Ahuja et 

al., 2008).  Bluetongue in Andhra Pradesh varies in severity across months 

and years. 

A forecasting model that predicts the presence and absence of bluetongue 

outbreaks at district level from environmental covariates (livestock 

demography, climate and land use pattern) exists for India 

(www.nadres.res.in).  The forecasting ability of these environmental 

models has not been systematically evaluated on “out of fit” data for 

bluetongue in India accounting for the past dependency of outbreaks 

(temporal autocorrelation) and using methods to handle count data (Poisson 

regression).   
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Bluetongue varies on a seasonal and annual basis (Fig. 3.1A) with more 

outbreaks in certain months and years than others.  Seasonal and annual 

variation in bluetongue outbreaks can be due to interaction between a range 

of extrinsic and intrinsic factors, discussed in the following sections. 

3.1.1 Extrinsic factors 

 

The maintenance of BTV is either due to the presence of adult Culicoides 

(potential vector) throughout the year or the presence of virus in the blood 

of infected or reservoir hosts.  The possibility of the latter is doubtful 

because detectable viraemia in cattle or other reservoir hosts is restricted to 

a maximum of about 50 days following patent infection (Bonneau et al., 

2002).  There are reports of the presence of adult C.imicola throughout the 

year in North Karnataka (Bhoyar et al., 2012), and such continuous 

presence requires suitable climatic conditions (Mellor et al., 2000).  

Temperature influences the development and survival rates of Culicoides, 

and viral replication within the adult vectors, all of which in turn govern 

the transmission of BTV (Mellor et al., 2000).  Additionally, rainfall can 

also influence larval development, survival and the abundance of 

Culicoides.  The influence of flooding or drought on the immature stages 

depends on the Culicoides species.  The pupae of C.imicola drown when 

breeding sites are flooded (Nevill, 1967), whereas pupae of the Pulicaris 

group in South Africa are tolerant of waterlogged breeding sites and even 

prefer them, because the pupae can float on the water surface (Nevill et al., 

2007). 
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Extreme weather events caused by El-Niño may be responsible for inter-

annual variability of rainfall in India.  An El-Niño effect on outbreaks of 

African Horse sickness in Southern Africa has been detected (Baylis et al., 

1999b).   

3.1.2 Intrinsic factors 

 

A disease may be absent from an area even when extrinsic conditions are 

suitable if some other factor in the transmission cycle comes into play.  

Herd immunity is one of several intrinsic factors responsible for the waxing 

and waning of infection rates even in the absence of climatic seasonality.  

In the case of bluetongue, several serotypes may be co-circulating in the 

same place (Coetzee et al., 2012) and not all serotypes cause severe disease.  

Immunity is serotype specific (Schwartz-Cornil et al., 2008) and any cross 

protection (which in the case of BTV occurs only with serotypes with 

similar Virus Protein 2, nucleotide sequences (Maan et al., 2007)) may 

reduce BTV outbreaks periodically, until such immunity diminishes or is 

lost through natural recovery, or death. Therefore the occurrence of 

pathogenic serotypes (which cause more severe disease) may be 

determined by the waxing and waning of more general (Virus Protein 2 

determined) herd immunity.    

New births of course replenish the stock of susceptible animals and, in 

general, the natural periodicity of immune-driven disease outbreaks is a 

function of the host population’s birth rate (Anderson et al., 1992). 

Herd immunity is potentially important epidemiologically only when 

infection rates exceed some threshold level, such that significant 
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proportions of local herds are immune-protected when BTV transmission 

rates increase seasonally.  The precise level of this threshold varies from 

one disease to another and its impact on disease outbreaks will depend upon 

the degree of seasonality in each transmission site.  Unfortunately, few 

surveys have been carried out in India to date to investigate local levels of 

immunity to BTV so that this and several other intrinsic factors may be 

playing an as yet un-quantified role in BTV transmission.  

3.1.3 Forecasting and Early warning system 

 

Forecasting and early warning systems have been used for a number of 

vector-borne diseases (Hii, et al., 2012), but there is no such system for 

bluetongue in India, except for a district level presence and absence 

forecasting system (www.nadres.res.in). The development of a forecasting 

system for any vector borne disease relies on the quantification of past 

outbreaks with vector and/or climatic variables using techniques 

accounting for temporal autocorrelation.  Any model developed for 

forecasting vector-borne diseases should be able to capture both short term 

and long term changes in the dependent variable and should be robust 

enough to make projections into the future on the basis of predictor 

variables from the present or recent past. 

Understanding the role of intrinsic and extrinsic factors that determine the 

severity of BT outbreaks in AP requires analytical methods that can deal 

with both the temporal dependence and non-normality of the outbreak data.   

In this chapter the role of weather and long term climate variation 
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associated with El-Niño is investigated to seek answers to the following 

questions: 

1. What are the relative roles of prior monthly conditions of temperature 

and rainfall, including monsoon conditions, in determining seasonal 

patterns in bluetongue outbreaks?  

2. Are BTV outbreaks in India cyclical, with periodicities of greater than 

one year? 

3. Once obvious environmental impacts are accounted for, is there any 

residual variance or periodicity in disease outbreaks that may indicate 

an important role of intrinsic factors such as herd immunity? 

4.  Can future BT outbreaks be forecast adequately using a model 

parameterised on past outbreak data? 

3.2 Materials and methods 

3.2.1 Disease data 

 

Bluetongue outbreak data: District level (admin-2) monthly BT outbreak 

data (1992-2009) were provided by NIVEDI (National Institute of 

Veterinary Epidemiology and Disease Informatics), formerly known as 

PD_ADMAS (Project Directorate on Animal Disease Monitoring and 

Surveillance), which maintains the livestock diseases database for India 

and collates outbreak data every month from different sources.  The 

analysis was restricted to data from Andhra Pradesh because this state has 

regular reporting and better surveillance (Ahuja et al., 2008) compared to 

other states of India.  The district level data were aggregated across Andhra 

Pradesh to calculate the sum of the bluetongue outbreaks every month as 
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the state-wide dependent variable (Fig. 3.1). The time series was divided 

into a training set (1992-2004) and a test set (2005-2007).  

3.2.2 Weather and El-Niño data 

Temperature and precipitation data 

Concurrent monthly mean, minimum and maximum temperature and 

precipitation estimates for Andhra Pradesh were extracted from the CRU 

TS3.10 dataset from the Climatic Research Unit (CRU) 

(http://www.cru.uea.ac.uk/data), University of East Anglia (Harris et al., 

2014).   All the temperature and precipitation variables were mean-centred 

(by subtracting the synoptic monthly means calculated for the period 1992 

to 2009 from the raw data) to give twelve monthly figures for each year.  

Centring of predictor variables helps to improve the efficiency of MCMC 

sampling (McCarthy, 2007; Searle et al., 2013) and the intercept is 

therefore the expected value of the response variable when all the predictor 

variable values are set to their means.  The intercept when the independent 

variables are not mean-centred is the expected values of the response 

variable when all the predictor variables are set to zero. 

El-Nino -3 (sea surface temperature) 

The coastal warming of the Pacific Ocean that is linked to anomalies in 

global climate is known as “El-Nino” (Trenberth, 1997).  The fluctuation 

of the atmospheric pressure over the ocean is known as the “Southern 

oscillation”.  The Pacific ocean warming and the fluctuations in the 

atmosphere together are known as ENSO (El Nino-Southern Oscillation). 

The El-Nino corresponds to a warm phase of ENSO and La Nina 
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corresponds to a cold phase of ENSO, although commonly (and 

incorrectly) both the cold and warm phase of ENSO are referred to as El-

Nino.  The Nino 3 region covers latitudes 500N to 50S and longitudes 900W-

1500W. The monthly sea-surface temperature (SST) data (1992-2009) were 

obtained from the Japan Meteorological Agency (JMA) (Ishii et al., 2005).  

The JMA analyses the SST data to calculate SST anomalies.  Five-month 

running means of monthly SST anomalies are used to identify periods 

which have anomalies of >= ±0.50C and these periods define the JMA Nino 

3 time series; El-Nino (positive deviation) and La Nina (negative 

deviation). A lower threshold of ±0.4oC is used for the JMA Nino 3.4 time 

series (Trenberth1997). 

3.2.3 Statistical methods 

 

To determine whether there were significant autocorrelations (BTV 

outbreaks at a given time depending on prior outbreaks) and to identify 

whether the series is stationary (i.e. has a constant mean and constant 

variance), autocorrelation functions (ACF) and partial autocorrelation 

functions (PACF) were examined.  

The ACF is the cross-correlation of the time series with itself as a function 

of time lag, k, between time points and lies between -1 to +1.  The series is 

stationary if the ACF falls from one to zero immediately and non-stationary 

if the ACF falls from one to zero gradually.  The statistical significance of 

the ACF at different lags can be tested using the Q-test or the Ljung-Box 

statistic (Chatfield, 2013). 
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The PACF measures correlation between BT outbreaks that are k time 

periods apart, after controlling for all correlations at intermediate lags.   In 

other words partial correlation is a conditional correlation, that is, a 

correlation between two variables after their mutual linear dependency on 

the intervening variables Yt-1, Yt-2Yt-k+1 has been removed.   PACF is used 

to identify the order of autoregressive model in ARIMA (Autoregressive 

Integrated Moving Average) models or other models with non-Gaussian 

data.  PACF was used in this analysis to identify the order of the 

autoregressive term. 

 

Cross-correlation functions (CCF) were examined to identify the lagged 

relationship and dependency between the environmental time series and the 

BTV outbreaks.  Performing cross correlation analysis on a raw time series 

is not advised (Chatfield, 2013) when the two time series are serially 

correlated and the correlation co-efficient on raw series can be misleading.  

Pre-whitening is performed when the driving variable (meteorological 

variables in this case) is serially correlated and cross-correlation using the 

raw series will not give the exact correlation between the driving and 

outcome (BTV outbreaks) variable.  An ARIMA model is fitted to the 

driving variable and the same model is used to ‘filter’ the outcome time 

series.  The residuals of the driving variable model and the filtered time 

series are then used to calculate the correlation co-efficient at different lags.   

The lags at which the relationship between temperature and rainfall and 

BTV outbreaks were significant were used in the model building process 

(Chatfield, 2013).  The maximum lag at which the CCF is calculated is 
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restricted to 10*log.10 (N/m), where N is the number of observations in the 

time series and m is the number of series (Ripley 2002).  For example in 

this case we have 216 observations and 2 time series, so the maximum lag 

at which the CCF is calculated is 10*log.10 (216/2) = 20.33, so the CCF will 

be plotted for ~ ±20 lags.  The significance for ±20 lags in the interval is 

determined from ±2/√N= ±0.14 (corresponding to 2 S.E.).  The lags at 

which significant correlations were identified were offered to the model 

building process. 

Periodicities in data can also be identified using time series techniques in 

the frequency domain - also known as spectral analysis.  Fourier 

transformation is a method used to identify periodicity in the data 

(Chatfield, 2013), but assumes that the mean, variance, and temporal 

dependence between data points all remain constant over time (referred to 

as stationarity).  However, the condition of stationarity is usually violated 

in disease time series and often in climate time series, which are then called 

non-stationary (Chaves & Pascual, 2006).  Vector borne disease time series 

data are often non-stationary due to seasonality in potential vectors 

transmitting the disease and also due to waxing and waning of herd 

immunity.  The time series under study can be made stationary by 

differencing, detrending or other transformation techniques (Chaves & 

Pascual, 2006) before Fourier transformation.  The disadvantages of 

Fourier transformation can be overcome by employing non-stationary time 

series tools such as wavelet analysis (Cazelles et al., 2008).  Wavelet 

transformation is performed either by a discrete method (Discrete Wavelet 

Transform, DWT) or a Continuous (Continuous Wavelet Transform, CWT) 
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method (Grinsted et al., 2004).  Both convolve a time series with a localised 

wavelet function and extract from the product information about the local 

(in time) power of the signal at the characteristic wavelength of the wavelet 

function.  By effectively varying this wavelength the localised power in the 

signal at a variety of wavelengths (= periodicities) can be calculated.  The 

only difference between DWT and CWT is that the former is applied at 

discrete intervals of time and wavelengths (hence the output wavelet 

diagram has a ‘blocky’ appearance) and the latter is applied continuously 

(and hence the output diagram has a smoother looking appearance).  The 

DWT is computationally simpler and is appropriate for data sampled at 

relatively long intervals; the CWT is more appropriate for more frequently 

sampled data and when dominant periodicities change gradually over time.  

The CWT was used in the present analysis.     

Wavelet analysis has been used in epidemiological time series (Cazelles et 

al., 2007) to identify the periodicities in the data which can be included in 

the model using harmonics or other smoothing techniques.  Wavelets can 

also be applied to two time series simultaneously, to identify the dominant 

periodicities in the time series and their cross correlation using cross-

wavelets (wavelet coherence).  This technique will be helpful in the case of 

bluetongue where there is not only within year seasonality but also inter-

annual variability in outbreaks.  Cross wavelet analysis usually produces 

two graphs, one the ‘cross wavelet transform’ that shows the common 

power in the two signals (effectively the product of the local amplitudes) 

and the other the ‘cross wavelet coherence’ which is effectively the 

localised correlation coefficient (squared, hence on the scale of zero to 1.0) 
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between the two signals.  To either graph (more commonly the former) may 

be added arrows indicating the localised phase lag between the two signals.  

Consistent phase lags within regions of high joint power (i.e. all localised 

arrows pointing in the same direction) are a strong indication that one 

process (e.g. rainfall) is driving the other (e.g. disease outbreaks) at the lags 

corresponding to the local phase difference (N.B. turning phase differences 

into absolute lags for modelling purposes is scale dependent).   

The wavelet transform is calculated from: 

dtttxaW ax )(*)(),( , 





 

Where * denotes the complex conjugate  

x (t) represent the time series of interest. 

Wx (a, ): wavelet co-efficients represent the contribution of scales or 

widths (the a values) to the signal at different time positions (the   values) 

 (t): is known as “mother wavelet”, the scale of which (a) is changed 

(discretely or continuously for the DWT or CWT respectively). 

Time series analysis  

Linear regression methods assuming residuals of the analysed time series 

are uncorrelated (Selvaraju et al., 2013) are inappropriate in the case of 

infectious diseases, when current outbreaks are dependent on the past 

outbreaks.  Nevertheless, there are numerous examples in other VBD’s 

which incorporate temporal dependency in the time series with Gaussian 
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outcomes (Gharbi et al., 2011; Luz et al., 2008; Wangdi et al., 2010) using 

the popular Box-Jenkins method (Helfenstein, 1986).  Purely 

autoregressive time series models have been extended to include weather 

variables (Gharbi et al., 2011; Helfenstein, 1991) and their lags, and also to 

account for seasonality (Zhang et al., 2010).  However, these autoregressive  

time series methods are well established for Gaussian outcomes, whereas 

models for non-Gaussian count data are less well developed in 

environmental epidemiology (Bhaskaran et al., 2013) and very few in 

infectious disease epidemiology (Chou et al., 2010; Fernández et al., 2009; 

Lu et al., 2009) as discussed in the Introduction chapter.   

The assumption of the Poisson distribution (the equivalence of variance and 

mean) is often violated by epidemiological time series data which tend to 

be over dispersed (variance > mean) (Heinen, 2003).  This over dispersion 

may be due to autocorrelation in the dependent variable in Poisson 

regression or may be due to changes in the epidemiological system itself 

(seasonality, herd population structure, movement and immunity, variation 

in serotypes etc.)  (Altizer et al., 2006).  Testing for residual autocorrelation 

and the presence of residual over dispersion is important to avoid errors in 

estimates (Scrucca et al., 2014).  Residual autocorrelation can be accounted 

for by using additional autoregressive terms. 

Time series techniques should account for both short-term (seasonal) and 

long-term (inter-annual) dependencies.  Short term dependency in the 

response variable may be due to extrinsic factors discussed above and can 

be accounted for by inclusion of covariates and by autoregressive terms.  

Long term dependency may be due to inter-annual climate variability or the 
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presence of herd immunity which can result in bias in estimates if not 

accounted for in a Poisson model. 

Relationships between the monthly numbers of BT outbreaks and 

environmental predictors were quantified using a seasonal Generalised 

Linear Mixed Model with Poisson errors, implemented in a Bayesian 

framework (Sanders et al., 2011).  In the event of finding significant 

autoregressive structure (AR (1)) in the PACF and ACF plots, a Bayesian 

Poisson model with autoregressive errors was fitted.  

The number of BT outbreaks (yt) observed in month t with corresponding 

meteorological variables xnt  was assumed to follow a Poisson distribution 

The probability function for Y is given by Eq. (1).                                                            
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Model building process 

An all subset approach was difficult to perform given the computational 

intensity of MCMC estimation.  Therefore, all possible combinations of 

monthly lags identified in the cross correlation of rainfall (0, 1& 2 lags) and 

temperature (2, 4 & 8 lags) were first fitted individually to identify the best 

model based on reduced DIC (Spiegelhalter et al., 2002).  Then, all possible 

combinations from the best model of rainfall lags and of temperature lags 

were fitted to identify the best monthly model, again based on reduced DIC.  

The residuals were tested for presence of any over dispersion using an 

overdispersion test (Scrucca et al., 2014) and for autocorrelation using the 

PACF. 
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Root mean square errors of the best models at each stage (monthly rainfall, 

monthly temperature, best combined monthly model) were calculated to 

evaluate the predictive power of the model.  The final model was used to 

make a forecast of the “out of fit” data.  

3.3 Results 

 

The maximum number of bluetongue outbreaks (470) was observed in 

September 2005 in Andhra Pradesh.  Monthly variation of bluetongue 

outbreaks, rainfall, maximum temperature and sea surface temperature 

(SST) are shown in Fig. 3.1.  No trend is observed in bluetongue outbreaks 

over the study period (Fig. 3.1) (measurements do not increase or decrease 

systematically), so there is no need to difference the series for further 

analysis (a commonly employed technique for data that trend over time).  

Monthly and yearly box plots (Fig 3.2 A) of bluetongue outbreaks shows 

seasonality and inter-annual variability respectively.  Outbreaks usually 

start in August, peak in September and decline from October onwards. The 

yearly box plots show significant inter-annual variability.  

Significant seasonality in rainfall is also observed due to the influence of 

both the South-West monsoon (June-September) and the North-East 

monsoon (October-December), and it also varies substantially between 

years. 

Similarly, monthly maximum temperatures (Fig. 3.2C) start to increase 

from the month of February and stay high (over 400C) until the end of May 
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(summer season) and then decline with the onset of monsoons from June 

onwards (Fig 3.2B).  

The PACF plot (Fig 3.3B) of the BT series shows significant 

autocorrelation only at lag 1, indicated by the areas above the blue dotted 

horizontal line (95% confidence interval).  In contrast there is strong 

significant autocorrelation in the rainfall and maximum temperature data 

(Fig. 3.4). 

Cross-correlations between the pre-whitened environmental time series and  

filtered bluetongue shows that there were significant correlations at lag 0, 

1 and 2 for rainfall (all positively correlated), lag 2 and 8 for minimum 

temperature (negatively correlated) and lag 2 and 8 for mean temperature 

(negatively correlated) (Fig. 3.5).  Maximum temperature at lag 2 and 8 is 

negatively correlated with bluetongue outbreaks and positively correlated 

with maximum temperature at lag 4.  

Cross-wavelet transformation of the BT and rainfall show matching of 

power at the dominant frequencies corresponding to a 12 month periodicity 

through much of the time series, whereas wavelet coherence (correlation) 

between BT and rainfall shows less consistent correlation at a periodicity 

of 12 months but a clear correlation in signals at 24-30 months periodicities 

(Fig. 3.6).  Thus this area of the time/frequency plots has relatively low 

joint power (Fig. 3.6C) but a high correlation (Fig. 3.6D) between the 

rainfall and BT time series.  

Cross wavelet and coherence analysis of the bluetongue outbreaks and El 

Niño 3 data reveals few areas of significant joint power (Fig. 3.7C) or 
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coherence (Fig. 3.7D).  This is unsurprising given the relatively large 

amounts of power at many different periods of < 1 year in both sequences, 

and the low amounts at periods of >= 1 year, surprisingly more noticeable 

in the El Nino series (Fig. 3.7A).  There is strong correlation between 

maximum temperature and El Niño3 at 6 months’ periodicity, and this is 

relatively consistent throughout the time series.  The coherence of El Nino3 

and rainfall is similar, but less pronounced (Fig. 3.8B).  

Comparison of different BT models using only rainfall predictor variables 

identified the one using rainfall at lag 2 and the autoregressive error term 

(AR(1)) as  the best, based on reduced DIC (Table 3.1).  For those models 

using only temperature predictors, the best one used all the available lags 

(2, 4 and 8) (Table 3.1).  Amongst all of the above models, however, the 

single overall best one was the simplest (rainfall at lag 2 plus AR (1) errors) 

and this model was subsequently used for making predictions on ‘out-of-

fit’ data.  

The mean co-efficient values and their credible intervals for best model 

with rainfall at lag 2 (Table 3.2) shows that monthly bluetongue outbreaks 

are significantly and positively associated with rainfall at lag 2.  The fit of 

this model to the data is shown in Fig. 3.9.  Comparison of models with and 

without temporal autocorrelation and covariates model shows that the 

model with covariate (rainfall at lag 2) and AR (1) outperforms the models 

with covariate only or AR (1) only (Table 3.3 and Fig 3.10), the latter of 

these two showing a reduction of 6000 DIC units compared with the 

former.  The variance explained by the AR (1) only model is slightly more 
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than the combined model (covariate and temporal autocorrelation), but far 

better than the covariate only model.   

The best model (rainfall lag 2 and AR (1)) predicts a maximum of 300 

outbreaks per month in 2005 (400 outbreaks were recorded), although the 

precise timing of this seasonal peak was not captured.  The two following 

years (2006 and 2007) are correctly predicted to have fewer outbreaks than 

in 2005 but again there are quantitative (number of outbreaks) and 

qualitative (seasonality) differences between predictions and reality (Fig. 

3.11). The value of the forecasting model is therefore questionable beyond 

predicting the overall severity of each year’s outbreak.
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Figure 3.1: Time series plots of (a) monthly Bluetongue outbreaks (b) Monthly  

rainfall (mm) (c) Maximum temperature (0C) and (d) sea surface temperature 

data(0C) from 1992-2009 (El-Niño 3). The figures a-c shows the values for Andhra 

Pradesh and figure d shows the values of SST for the geographical area between 

50 N-50S, 900-1500W. 

 

 

 

 

Year 

Year 



82 
 

 

 

                  

 

Figure 3.2: Box plots of the raw monthly and yearly mean bluetongue outbreaks 

and environmental variables. (A) Mean monthly and yearly bluetongue outbreaks 

(B) Mean monthly and yearly Rainfall (C) Mean monthly and yearly Maximum 

temperature. The box represents 50% of the values of the data and the whisker 

represents the minimum and maximum values in the data. The median is 

represented by horizontal line within the box. The box plots are used to display 

median, dispersion and skewness in the data (indicated by a median line not 

centred in the box). 
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Figure 3.3: Plots of (A) Autocorrelation function (B) Partial autocorrelation 

function of bluetongue outbreaks. The X-axis gives the number of lags in years 

and, the y-axis gives the value of the correlation between -1 and 1. Blue dashed 

lines indicate the 95% confidence intervals, within which the correlation is non-

significant. 
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Figure 3.4: Plots of (A) Autocorrelation function (B) Partial autocorrelation 

function of maximum temperature and rainfall. The X-axis gives the number of 

lags in years and, the y-axis gives the value of the correlation between -1 and 1. 

Blue dashed lines indicate the 95% confidence intervals, within which the 

correlation is non-significant. 

 

 

 

 

 

 

A B 

C D 



85 
 

         

         

Figure 3.5: Cross-Correlation functions of bluetongue outbreaks with rainfall, 

maximum, mean and minimum temperatures. (A–D) Cross-correlation functions 

(CCF) with (A) Maximum temperature (B) Mean temperature, (C) Minimum 

temperature and (D) Rainfall. The blue dashed lines are the 95% confidence 

intervals for the cross-correlation between two series that are white noise. 
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Figure 3.6: Dominant frequencies in the monthly bluetongue outbreaks time series 

& monthly rainfall time series and their cross-correlation. Wavelet power 

spectrum- The white dotted line is the cone of influence indicating the region of 

time and frequency where the results are not influenced by the edges of the data 

and are therefore reliable.  The solid black line corresponds to the 95% confidence 

interval and the areas within this black solid line indicate significant variability 

at the corresponding periods and times. (A) & (B) wavelet power spectrum of the 

bluetongue outbreak series and rainfall respectively. The wavelet spectrum is 

shown with power increasing from blue to red colours.  (C) Cross-wavelet power 

spectrum between bluetongue outbreaks and rainfall (D) Cross-wavelet 

coherence (correlation) between the two time series. Spectrum power in (C) and 

coherence in (D) increases from blue to red (for (D) on the scale of 0 to 1). ). X-

axis: time in months from January 1992 (= month 1), Y-axis: localised periodicity 

in months. 
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Figure 3.7: Dominant intra-annual frequencies in the monthly bluetongue 

outbreaks time series & monthly El Niño 3 time series and their cross-correlation. 

Wavelet power spectrum- The white dotted line is the cone of influence indicating 

the region of time and frequency where the results are not influenced by the edges 

of the data and are therefore reliable. The solid black line corresponds to the 95% 

confidence interval and the areas within this black solid line indicate significant 

variability at the corresponding periods and times. (A) & (B) wavelet power 

spectrum of the bluetongue outbreak series and rainfall respectively. The wavelet 

spectrum is shown with power increasing from blue to red colours. (C) Cross-

wavelet power spectrum between bluetongue outbreaks and rainfall (D) Cross-

wavelet coherence (correlation) between the two time series. Spectrum power in 

(C) and coherence in (D) increases from blue to red (for (D) on the scale of 0 to 

1). ). X-axis: time in months from January 1992 (= month 1), Y-axis: localised 

periodicity in months. 
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Figure 3.8: correlation between El Niño 3 with maximum temperature (A) and 

rainfall (B) Cross-wavelet coherence (correlation) and the wavelet spectrum is 

shown with coherence increasing from blue to red colours( scale is from 0 to 1.0). 

X-axis: time in months from January 1992 (= month 1), Y-axis: localised 

periodicity in months.
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No. Variables DIC 

1. Best combination of monthly rainfall variables  

2. Rainfall at lag 2 + AR(1) 494.072 

3. Rainfall at lag 0 & 2 + AR (1) 494.406 

4. Rainfall at lag 1& 2 + AR (1) 494.585 

5. Rainfall at lag 0,1 & 2 + AR (1) 494.848 

6. Rainfall at lag 0 + AR (1) 500.888 

7. Rainfall at lag 0 &  1 + AR (1) 502.821 

8. Rainfall at lag 1 + AR (1) 503.229 

9. Rainfall at lag 0 + AR (1) 500.888 

9. Best combination of monthly temperature variables  

10. Maximum temperature at 2, 4 & 8 lag + AR (1) 499.299 

11. Maximum temperature at 4 & 8 lag + AR (1) 499.616 

12. Maximum temperature at 2& 4 lag + AR (1) 501.215 

13. Maximum temperature at 4 lag + AR (1) 502.686 

14. Maximum temperature at 2 + AR (1) 503.345 

15. Maximum temperature at 8 lag + AR (1) 503.413 

16. Maximum temperature at 2 & 8 lag + AR (1) 503.96 

17. Combination of best monthly rainfall and monthly temperature  

18. Maximum temperature at 2, 4 & 8 lag and rainfall at lag 2 + AR (1) 498.601 

19. Maximum temperature at 2& 4 lag and rainfall at lag 1 + AR (1) 499.241 

20. Maximum temperature at 2&  4  lag and rainfall at lag 2 + AR (1) 499.241 

21. Maximum temperature at  lag 4  and rainfall at lag 2 + AR (1) 502 

22. Maximum temperature at 2& 8 lag and rainfall at lag 2 + AR (1) 502.62 

23. Maximum temperature at 8 lag and rainfall at lag 2 + AR (1) 503.11 

24. Maximum temperature at 2 lag and rainfall at lag 2 + AR (1) 503.913 

Table 3.1: Selection of monthly models (rainfall and temperature) and 

combination of rainfall and temperature variables based on reduced DIC. 



90 
 

 

Variable  Mean (sd) Credible interval 

Best model 

Intercept -2.509 (0.494 ) -3.537, -1.577 

Rainfall at lag 2 0.026 (0.003 )  0.018, 0.033 

Temporal autocorrelation at lag1 0.5274 (0.4051)  

Table 3.2: Mean co-efficient and credible interval of the best model (rainfall at 

lag 2, plus AR (1))  

  

Model RMSE  DIC  

AR(1) model 0.32 497.08 

Rainfall at lag 2 + AR(1) 

model 

0.38 494.07 

 

Rainfall at lag 2 model 57.51 6985.8 

Table 3.3: Root mean square error (RMSE) and DIC for rainfall at lag 2 with 

AR (1), rainfall at lag 2 and AR (1) only model. The total variance of the raw 

data was 3492 
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Figure 3.9: Plot of best model fit with rainfall at lag 2 and the AR(1) error term.  

Grey areas correspond to the 95% credible interval, red solid line is the 

predicted number of outbreaks and the circles are the observed number 

outbreaks.  
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Figure 3.10: Plot of model fits with  A) rainfall at lag 2 only (no AR(1)) and B)  AR(1) only (no rainfall at lag 2).Grey lines correspond to 

the 95% credible interval, red solid line is the predicted number of outbreaks and the black circles are the observed number outbreaks. 
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Figure 3.11: Plot of observed bluetongue outbreaks and predictions on “out of 

fit” data with best model with lowest DIC (Rainfall at lag 2 with AR (1)).(Black 

open circles: observed bluetongue outbreaks, blue line: predicted bluetongue 

outbreaks) 

 

3.4 Discussion 

 

The present study considered the effects of climate on monthly bluetongue 

outbreaks in Andhra Pradesh by accounting for temporal autocorrelation 

using a Bayesian Poisson regression approach.  Numbers of bluetongue 

outbreaks increased under conditions of high rainfall two months 

previously.  The lagged effect of satellite derived temperature variables 

(negatively correlated) and NDVI (positively correlated) has been shown 

to be significant in the temporal epidemiology of bluetongue in Israel 
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(Purse, et al., 2004).  The semi-aquatic conditions created by high rainfall 

are favourable for midge breeding and there are reports of correlations 

between abundance of C.imicola and sero-conversions in domestic animals 

after the start of monsoon season in Tamil Nadu state (Udupa 2001).  

Overall, the best model was also one of the most parsimonious ones, 

including only rainfall at lag 2 and temporal autocorrelation in the error 

term; this model was therefore used for making prediction on the ‘out-of-

fit’ data.  

Wavelet analysis is advocated along with cross-correlation analysis to 

identify periodicities and significant lags in vector borne diseases (Cazelles 

et al., 2007).  This study detected only an annual cycle in the cases of 

bluetongue and the rainfall time series, possibly due to the relatively short 

time series involved .  In general, a time series has to be at least six times 

as long as the longest period within it that may be demonstrated statistically 

(Chatfield, 2013).  Thus the 17 year time series here would not be expected 

to reveal significant periodicities of longer than about two to three years.   

Wavelet coherence analysis which measures the strength of correlation at 

specific times and periodicities helps to understand the relationship 

between two time series (Cazelles et al., 2008).  The wavelet coherence 

graph identified a high and relatively persistent correlation of bluetongue 

and rainfall at periodicities of between two and three years (Fig. 3.6D), 

although the strength of both signals at these periods appears to be 

relatively weak (Fig. 3.6A and Fig. 3.6B).   
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There was no correlation between the bluetongue outbreaks and El-Niño, 

except for two brief periods of correlation at a periodicity of six months.  

This absence of any strong, consistent relationship between BTV outbreaks 

and El Niño rules out any possibility of using the latter to predict the former 

at the present time.  Longer time series are required to investigate what 

links, if any, occur between BTV outbreaks and any El-Nino associated 

phenomenon (including climate variables).  Ideally these links should 

involve periodicities of > 1 year (since within-year periodicities are 

determined by more regular seasonal events) so that future disease 

forecasting may be on a longer term basis, if this is at all possible. 

The best model was able to differentiate between years with a larger 

number of outbreaks and years with fewer outbreaks (Fig. 3.11), although 

the sample size (n=3) was very small to detect inter-annual variability.  The 

model also did not predict seasonal timing of the outbreaks particularly 

well.  

The model with only a single climatic variable (rainfall at lag 2) was the 

most parsimonious model with temporal autocorrelation.  The results 

demonstrated that the intrinsic factors (models with temporal 

autocorrelation) dominate the extrinsic factors (model with covariate) 

considering the huge drop in DIC (6985 units).  The domination of intrinsic 

factors over the extrinsic factors is important with respect to BTV virus 

control strategies and future surveillance activities.  There is need for 

regular surveillance of vectors, serotype distribution in different seasons 

and also the immune status (herd immunity data) to better understand the 

significant and dominant effect of intrinsic mechanisms in this analysis.  
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Nevertheless, the combined model (with covariate and temporal 

autocorrelation) can be used in very approximate, qualitative forecasting of 

BTV outbreaks, and urgently needs further improvement by investigating 

the nature of the important AR (1) effect. 

           Overall the results highlight the importance of lagged climatic effects on 

bluetongue outbreaks.  The selection of rainfall suggests the importance of 

these conditions on the breeding of midges and subsequent transmission of 

the virus, but the effect of climate is more on seasonality of BTV outbreaks.  

Although long-term periodicity was not identified in either the bluetongue 

series or the rainfall series when analysed with wavelet or cross wavelet 

analysis, there was strong correlation of the dominant frequencies at two 

and three year periods in wavelet coherence analysis.  Wavelet analysis has 

been previously used in epidemiological time series (Chaves & Pascual, 

2006; Onozuka, 2014).  There was no significant long term periodicity in 

the bluetongue outbreaks data and also on the residuals after fitting a 

Poisson model with autoregressive error structure  

The performance of the AR (1) alone (Table 3.3 and Fig 3.10 B) was better 

than the model with rainfall at lag 2 and this section discusses its 

significance.  The difference between purely autoregressive models 

(inclusion of the number of previous outbreaks or cases) and models which 

include AR (1) in the error term (which substitutes for the past number of 

cases or outbreaks) in the frequentist domain was discussed in Chapter 1.  

The advantage of specifying an AR(1) relationship  in the error terms of a 

Bayesian model is that each component (meteorological variables and 

autoregressive component) are derived from a prior distribution and the 
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posterior distribution is used for drawing inference and thus the role of 

different components can be estimated.    There are purely autoregressive 

models for Poisson data in the frequentist domain (i.e. the autoregressive 

element is not in the error term), but this makes it difficult to quantify the 

role of the different components in the model.  Quantifying the variance 

explained by different components is not straightforward in Bayesian 

framework also, but the contribution of different components (fixed and 

random effect) can be compared by change in DIC by fitting fixed effect 

and random effect models separately. The dominance of AR (1) term in the 

best model over rainfall at lag 2 is interesting considering the role of other 

variables (unmeasured variables) which the AR (1) term captures.  The 

other unmeasured variables can again be either extrinsic or intrinsic or both.  

The unmeasured extrinsic variable may be relative humidity, wind speed, 

soil moisture or some other variable of importance to the life cycle of the 

vectors or to the transmission of BTV.  The role of herd immunity as one 

of the intrinsic factor was discussed earlier.   What was particularly 

interesting here was that whilst the PACF for the BT case numbers shows 

no effects beyond a lag of 1 year (Fig 3.3B) the equivalent PACF of the 

climate variables did so (Fig. 3.4D).  This rather perplexing result indicates 

that whilst the climatic system seems to have a ‘memory’ lasting longer 

than 1 year, the BT system does not.  It is perhaps possible that the inter-

year memory effects of herd immunity are obscured in a vector-borne 

disease such as BT because the numbers of vectors produced each year is 

highly variable, so the ratio of infected vectors to hosts may be relatively 

independent of the number of past BT cases.
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4.1 Introduction  

 

Midge-borne disease systems are ecologically complex, with transmission 

in India and elsewhere often involving several ruminant hosts and biting 

midge (Culicoides, Diptera:Ceratopognidae) vector species, diverse 

landscape and environmental conditions within a single region.  Though 

monsoons are thought to govern the size and timing of epidemics in India 

(Prasad et al., 2009), the severity of the disease varies substantially between 

districts, even within areas subject to similar monsoon conditions, 

suggesting that other landscape and host variables also affect transmission.  

More than 22 BTV serotypes are circulating in the country, from distinct 

geographic origins (Maan et al., 2012; Sreenivasulu et al., 2003).  There is 

a paucity of systematic studies of Indian midge distributions and vectorial 

capacities (Ilango, 2006), but both dung-breeding (e.g. C. oxystoma, which 

breeds in buffalo dung) and moist soil breeding midges (e.g. C. imicola, C. 

schultzei, C. peregrinus), have been found to be abundant in BT-affected 

districts in different states (Reddy & Hafeez, 2008).  Mixed farming by the 

small and marginal farmers of South India often involves indigenous cattle 

maintained for draft purpose and buffalo for milk production.  Variation in 

the mixture of different livestock species kept in the different regions of 

India is expected to affect the impact of midge-borne BTV in South India.  

This chapter investigates the roles of hosts, climate and landcover in 

determining the severity of bluetongue outbreaks across South India by 

employing an All Subset Method (ASM) for variable selection in a 

Bayesian framework, also accounting for spatial autocorrelation. 
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4.1.1 Diversity of climate,  hosts, and landcover on BTV outbreaks and 

vector distribution 

 

In many areas affected by BT worldwide, disease impacts have been linked 

to rainfall patterns (Baylis et al., 1999; Walker, 1977).  Annual rainfall in 

South India is influenced by the South-West monsoon system (June-

september) and the North-East monsoon system (October- December).  

Andhra Pradesh, Karnataka and some parts of Tamil Nadu receive South-

West monsoon rainfall (Fig. 4.1C), while the North-East monsoon rainfall 

(Fig. 4.1B) covers coastal Andhra Pradesh, some parts of Karnataka and 

most of Tamil Nadu.  Culicoides imicola  breeds in wet soil enriched with 

organic matter (Meiswinkel et al., 1994) and its abundance is related to 

temperature and rainfall.  Temperature plays a significant role in the 

survival and fecundity of Culicoides (Mellor, 2000) and precipitation can 

provide semi-aquatic habitats for the development of larvae.    

 India is home to 74 million sheep, 6.8% of the world sheep population 

(FAOSTAT 2010) and 12.71% of the total livestock population of the 

country (Livestock census 2012).  There are more than 40 sheep breeds in 

India, of which 14 are present in South India.  Worldwide, certain breeds 

of sheep and wild ruminant species (e.g. white-tailed deer) are highly 

susceptible to BT disease (Maclachlan et al., 2009).  Sheep that are native 

to tropical and subtropical regions of the world where BTV is enzootic are 

usually resistant to BT, whereas fine-wool European breeds such as the 

Merino are highly susceptible.  The same situation exists in India, where 

past outbreaks of BT have been detected not only in exotic breeds 

(including Rambouillet and Merino) but also in crossbreeds of sheep, whilst 
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local breeds are considered to be relatively resistant (Prasad et al., 2009) 

(Lonkar et al., 1983), though quantitative genetic breed susceptibility 

studies are lacking.  In South India, Nellore, Ramnad white and Trichy 

black are thought to be more susceptible to BTV than other breeds (Rao et 

al., 2014) 

Although host species and type are very important in bluetongue 

epidemiology, very few studies have examined their roles (Baylis et al., 

2004, Witmann et al., 2001) in determining the distribution of disease 

patterns.  A recent study (Acevedo et al., 2010) to predict spatial patterns 

in C.imicola abundance found that host abundance explained the maximum 

variance of all the predictors considered.  In the past there were reports of 

high seroprevalence of BTV virus in livestock species other than sheep, 

such as cattle and buffalo, without clinical disease (Prasad et al., 2009).   

Particular land covers may favour the presence and abundance of potential 

vectors for bluetongue or provide suitable habitat for grazing of susceptible 

hosts.  For example, forest and pasture areas were found to increase the risk 

of BTV-8 spread in North-Western Europe (Faes et al., 2013) and this was 

attributed to these being preferred habitats for the key European vector 

species group, the C. obsoletus group.  Culicoides imicola preferred 

sparsely vegetated areas, whilst species in the Obsoletus group favoured 

shaded habitat (Conte et al., 2007).  The influence of land use has less often 

been considered in tropical and subtropical countries but in India it is 

expected that irrigated and rain-fed agricultural areas may be more likely 

to contain suitable semi-aquatic breeding sites for midges, whilst forested, 

high altitude areas and urban areas will be unsuitable for grazing.  
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4.1.2 Spatial autocorrelation 

 

Understanding how geographical variability in hosts, vectors and climate 

interact to produce variation in disease severity across districts requires 

quantitative methods that can deal with collinearity and spatial dependency 

in errors, which may arise due to intrinsic processes (disease spread 

between districts) and extrinsic effects (arising from spatial autocorrelation 

of environmental variables).  Collinearity occurs when predictor variables 

are highly correlated, hampering discrimination of their individual effects 

on the outcome or dependent variable.  In disease epidemiology, 

observations which are nearer to each other have errors that are more 

similar than observations farther apart.  Such spatial autocorrelation inflates 

model accuracy but also the estimated explanatory power of environmental 

predictors (Dormann et al., 2007).  Spatial autocorrelation can also be a 

problem if certain independent variables (with spatial structure) are 

unavailable and therefore have to be omitted. 

In generalized linear models, all parameters are modelled as fixed effects 

and estimated by Maximum Likelihood (ML) methods.  In ecological 

studies, when there is spatial dependence, and key covariates may be 

missing, the ML approach often leads to unsatisfactory estimates of the 

district level risk due to extra-Poisson variation (Clayton, 1996)  

Bayesian generalized linear mixed models (Breslow & Clayton, 1993) 

overcome these problems by explicitly modelling the missing covariates 

and spatial dependence as random effects, through a prior distribution 

(Clayton, 1996).  The Besag-York-Mollie (BYM) model (Besag et al., 
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1991) can account for spatially structured and spatially unstructured 

random error variation (the latter arising from unmeasured non-spatial 

predictors) as well as fixed effects of environmental predictors.  Bayesian 

disease mapping has been developed for many diseases  (Banerjee et al., 

2004; Besag et al., 1991) using MCMC (Markov Chain Monte Carlo) 

algorithms for parameter estimation for both chronic non-infectious 

diseases as well as  for vector borne diseases (Alexander et al., 2000; 

Diggle, et al., 2002b).  Recently, an approximate method for parameter 

estimation in Bayesian frameworks has been proposed (Rue et al., 2009).  

This uses integrated nested Laplace approximations (INLAs) to estimate 

the posterior marginals of interest and can be computed easily with vastly 

reduced computation time (compared to MCMC) in R (R Development 

Core Team, 2005) using the INLA library (Martino & Rue, 2009).  The 

computatonal efiiciency of INLA makes possible the fitting of all possible 

combinations of variables (All Subsets Method) in a Bayesian framework.  

Using this BYM model approach fitted in INLA (Blangiardo et al., 2013) 

the present chapter investigates the role of climate, land-cover and 

availability of livestock hosts in explaining geographical variation in the 

severity of BT outbreaks across districts in South India with the following 

hypotheses in mind: 

1. The severity of outbreaks will be greater in areas with greater availability 

of land-cover-types containing water bodies or irrigated areas that provide 

breeding habitat for Culicoides (Diptera: Ceratopogonidae) midges; 
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2. Outbreaks will be fewer or absent in areas with closed forest because 

farming of any sort usually does not occur in closed forests but may occur 

in open forest types that are used by farmers for grazing; 

3. The severity of outbreaks will increase as sheep numbers increase, 

particularly as the numbers of certain local and exotic breeds increase; 

4. The severity of outbreaks will increase as cattle and buffalo numbers 

increase, since virus may circulate silently in these reservoir hosts and 

increase levels of disease in co-occurring susceptible hosts 

The three states of South India (Andhra Pradesh, Karnataka and Tamil 

Nadu)  are distinct not only in terms of their geography, land use pattern, 

climate and host and breed diversity but also in their disease reporting 

systems and veterinary expertise (veterinary colleges, disease diagnostic 

laboratories, number of veterinary hospital).  Therefore data quality varies 

from state to state.  Given the differences in both the disease systems and 

the reporting in the different states, modelling was carried out separately 

for the three states, and compared with a combined, South India model. 

4.2 Materials and Methods 

4.2.1 Bluetongue outbreak data 

 

District level (admin-2) monthly BT outbreak data (1992-2009) were 

provided by PD_ADMAS (Project Directorate on Animal Disease 

Monitoring and Surveillance) which maintains the livestock diseases 

database for India and collates outbreak data every month from different 

sources.  The analysis was restricted to data from three states of South India 

namely Karnataka (n = 27 districts), Andhra Pradesh (n = 23 districts) and 
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Tamil Nadu (n = 30 districts), in which outbreaks are regularly reported, 

with 61 out of the total of 80 districts having reported outbreaks of BT at 

one time or another over the 18 year study period.  Despite the fact that 

there is high sero-prevalence of BT antibodies in most of the states of India 

(Bandhyopadhyay  & Mallick, 1983; Kakker et al., 2002; Bhanuprakash et 

al., 2007), there are infrequent clinical outbreaks outside these three 

southern states.  The mean annual number of outbreaks per district over the 

study period was calculated and was used as the dependent variable in all 

the models described here.  

4.2.2 Land-cover data 

 

The proportions of each district covered by ten land-cover classes were 

extracted from the Global cover land-cover map (GlobCover, Defourny et 

al., 2006) using the Zonal Statistics option in ArcMap 10.1 (ESRI, Inc., 

Redlands, CA, U.S.A.).  These were logit-transformed (as they were not 

normally distributed) and each considered individually as predictors in the 

analysis.  The ten classes were selected from the original 24 available in 

GlobCover, due to their assumed importance for BT epidemiology, either 

because they were likely to contain favourable semi-aquatic breeding 

habitats for Culicoides vectors (post-flooded/ irrigated cropland, rain-fed 

and mosaic croplands, water bodies, classes 1 to 3) or because they were 

likely to be favourable (closed to open forest, classes 4, 5 and 7) or 

unfavourable for grazing of livestock (closed forest, including different 

percentages of cover, classes 6 and 8). Urban areas (class 9) and water 

bodies (class 10) are areas with low livestock density and were expected to 

be unfavourable for disease occurrence.  
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4.2.3 Host species and sheep breed data 

 

Densities of host species, including  indigenous sheep, non-descript sheep, 

crossbred & exotic sheep, goats, crossbred cattle and buffaloes, were 

extracted from the database of National Livestock census data  

(http://www.dahd.nic.in/) and log-transformed because the absolute values 

were not normally distributed. Out of over 40 breeds of sheep present in 

India (Patnayak, 1988), only 14 breeds are present in South India.  The 

indigenous breeds are; Bellari, Mandya, Deccani, Hassan, Nellore, 

Coimbatore, Kengur, Kilakarsal, Madres Red, Mercheri.  All the exotic and 

crossbred Sheep are grouped into one category referred to here as ‘exotic 

& crossbred Sheep’.  Finally, the single ‘non-descript sheep’ category is of 

all the indigenous breeds which cannot be identified with any certainty or 

do not have more than 50% similarity to any recognised breed.  The 

distributions of several host types in South India are shown in Fig. 4.3.   

4.2.4 Rainfall and temperature data 

 

Monthly Rainfall Estimates (RFE) were obtained from the NOAA/Climate 

Prediction centre RFE 2.0. (Xie et al., 2002).  Seven year averaged values 

(2004-2010) of different monsoon rainfall (South-West and North-East) 

and annual rainfall for districts were extracted using the Zonal Statistics 

function in ArcMap 10.1 (ESRI, Inc., Redlands, CA, U.S.A.).  The South-

West monsoon occurs from June to September and the North –East 

monsoon from October to December.  Thus the monsoon rainfall variables 

were calculated as the sums of the monthly rainfalls for these respective 
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periods.  The annual mean temperature layer (1950-2000) at 1km spatial 

resolution was obtained from Worldclim (Hijmans et al., 2005). 

Thus for the present analysis average annual values of BTV outbreaks per 

district for the period 1992-2009 were related to a single time point estimate 

of land-cover (2006 map), host abundance (2007 census) and mean 

seasonal rainfall data (2004-2010) and a single time point estimate of mean 

annual temperature (derived from a single climate surface based on data 

from 1950-2000). 



108 
 

4.2.5 Modelling approach 

 

Relationships between the average annual number of BTV outbreaks (Y) 

and environmental predictors were quantified using a generalised linear 

mixed model with Poisson errors, implemented in a Bayesian framework. 

The probability function for Y is demonstrated in Eq. (1).      
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Where 0  is the intercept 1 to n  be the coefficients for the fixed effects 

of predictors. 

( ix1 to nix ) in each district i. i is a structured spatial component assuming 

Besag-York-Mollie (BYM) specification (Besag et al., 1991), modelled 

using an intrinsic conditional autoregressive structure (iCAR). 

)(iN  is the number of districts that share boundaries with the i-th district, 

and i is the unstructured spatial effect in each district, modelled using an 

exchangeable prior i ~ Normal (0,  
2). iCAR is based on a set of 

districts that share boundaries for which an adjacency matrix is defined, 

listing for each district all other districts with which it shares a boundary or 

adjacency. Weights are defined for those adjacencies, and have a value of 

1 when two districts share a boundary and a value of zero when they do 

not.                                                                                                                                                                                                   

4.2.6 Model building and selection of predictors 

 

Variable selection is critical to understanding the importance of the impact 

of individual environmental predictors upon the distribution of BT 

outbreaks, and it can be undertaken using a wide range of frequentist and 

Bayesian approaches (Efron et al., 2004; George, 2000; Miller, 2002). 

Given the computational efficiency that INLA offers over MCMC 

methods, it was possible to implement a modified All Subsets approach to 

variable selection, where all possible combinations of the total p 

explanatory predictors, from size 1 to p, were fitted (making 2p-1 

combinations in all) and the most parsimonious model was selected using 

information criteria.  Pairwise Pearson correlation analyses were performed 
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on all 32 predictors to identify pairs of predictors that were highly 

correlated (r > 0.7, p < 0.001) (leading to the removal of 8 breed and host 

predictors, and one land-cover class).  The two correlated variables were 

removed by fitting a univariate model for each of the correlated variables 

and the model with lower DIC was retained.   In the South India model 

there were 25 predictors (9 land-cover, 4 climate, and 12 host predictors). 

In Andhra Pradesh there were 22 variables (9 land cover, 4 climate and 9 

host variables), in Karnataka there were 25 variables (9 land cover, 4 

climate and 12  host variables) and in Tamil Nadu there were 28 variables 

(9 land cover, 4 climate and 15 host variables) considered for selection by 

the models (Tables 4.1 & 4.2).  Since it was impossible even in INLA to fit 

all possible combinations for the entire predictor dataset, the all subset 

approach was applied first to each predictor variable set alone (i.e. land-

cover or climate or host type).  This approach identified the best land-cover, 

climate and host models, and this was done for each state in turn and then 

for all states together (covering the whole of South India).  For each 

geographical area, the best model (Eq 1) was identified within each 

category as the model with the lowest Deviance Information Criterion 

(DIC) (Spiegelhalter et al., 2002).  DIC is a generalisation of the Akaike 

Information Criterion (AIC), and is derived as the mean deviance adjusted 

for the estimated number of parameters in the model, striking a balance 

between model fit and complexity.  This approach allows a measure of out-

of-sample predictive error and prevents over-fitting (Gelman & Hill, 2006).  

Once the best model in each category had been identified for each 

geographical area, all possible model combinations of the constituent 
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predictors were fitted and the best combined model was again identified 

using the DIC.  

Once the best model was identified in each category of the predictor 

variables by including both structured and unstructured heterogeneity (Eq 

1) and the covariates were analysed by fitting four different models: BYM 

model with covariates (equation 1); a Besag model  with 

covariates(equation 2); an i.i.d model with covariates (equation 3);  and 

finally a covariate only model (equation 4).  These four types of model were 

fitted in order to understand the role of the different components in 

explaining bluetongue outbreaks in South India.  

The proportion of variance explained by the spatially structured component 

and the unstructured component within a BYM model was estimated by 

equation 5: 
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To evaluate predictive performance, district specific predicted posterior 

mean values from both the state-level and the South India model were 

compared with the corresponding observed mean number of outbreaks 

using pair-wise Pearson’s correlation statistics.  To test the out-of-fit 
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predictive performance of the model, leave-one-out cross validation 

statistics, namely Conditional Predictive Ordinates (CPOs) were calculated 

(Gelfand, 1996).  The CPO expresses the posterior probability of observing 

the value of yi when the model is fitted to all data except yi, with a larger 

value implying a better fit of the model to yi, and very low CPO values 

suggesting that yi is an outlier and an influential observation resulting in 

bias in estimates.  When many CPO values cluster near zero, the model 

demonstrates poor out-of-fit performance.  When many CPO values cluster 

near one, the model demonstrates good out-of-fit performance (Lawson, 

2013). 

4.3 Results 

 

The mean annual number of outbreaks per district ranged from 0 to 33.83 

(mean ± s.e. = 3.74 ± 7.13).  The district with the most annual outbreaks 

was Prakasham (Andhra Pradesh) with 370 outbreaks in 1998.  The mean 

annual number of outbreaks per district ranged from 0 to 19 (mean ± s.e. = 

2.11± 4.59) in Karnataka from 0 to 28.05 (mean ± s.e. = 3.27±7.25) in 

Tamil Nadu and from 0 to 33.83 (mean ± s.e. = 3.74 ± 7.13) in Andhra 

Pradesh. 

4.3.1 South India model 

Models containing only land cover or host predictors out-performed models 

with only climate predictors (Table 4.3) and models with spatial random 

effects outperformed models with non-spatial random effects in all 

geographical areas.   
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Considering the best combined models, the number of outbreaks in  South 

India (Table 4.5), were positively associated with rain fed croplands and 

the Nellore breed of sheep, and negatively associated with closed to open 

(>15%) shrub land and  South-West monsoon rainfall.  The structured and 

unstructured spatial components were significant in the combined best 

model (Table 4.5). 

Comparison of different models with different structures within individual 

categories of models (host and land cover), resulted in better performance 

of models with BYM and Besag structure than with iid models.  Within the 

climate models, however, the BYM and iid models outperformed the Besag 

model. The model with covariates only was the worst performing model in 

all the individual categories of models.  The BYM model had a lower DIC 

(DIC=199.27) than models containing either the predictors alone 

(DIC=486.46) or spatial random effects alone (DIC= 231.25) (Table 4.4), 

and had fewer outliers (detected from CPO and cross-validation statistics).  

A large proportion of the variance described by the spatial random effects 

was explained by unstructured heterogeneity (>99%) rather than structured 

heterogeneity.  

The predicted mean number of outbreaks using the best model (Fig. 4.4B) 

shows excellent correspondence with the observed mean number of 

outbreaks (Fig. 4.4A), with a correlation co-efficient of r = 0.996 (p < 

0.005) for a BYM model and a correlation co-efficient of r = 0.68 (p<0.005) 

for a covariates only model (without random effects).  The model is able to 

discriminate between districts with and without outbreaks and also 

delineates severely affected districts successfully.  Areas with a reported 
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absence of BT include regions with forest cover (Fig. 4.2B) at high altitude 

which have few sheep. 

4.3.2. State-level models 

The host and land cover models within individual categories outperformed 

the climate model in all the three states, but host variables outperformed 

land cover variables and climate variables in the Karnataka models.  

Considering the best combined models (Table 4.6) for Andhra Pradesh, the 

mean annual numbers of BT outbreaks were significantly and positively 

related to the abundance of buffalo, exotic & crossbred sheep and  goat 

populations and to artificial surfaces and associated areas, and significantly 

negatively related to  the area of closed broadleaved deciduous forest.  The 

average numbers of BTV outbreaks  in Karnataka (Table 4.7) were 

significantly positively related to  abundance of non-descript sheep and 

exotic & crossbred sheep and significantly negatively related to the 

abundance of Mandya sheep.  In Tamil Nadu BTV outbreaks were 

significantly positively associated with the abundance of Ramnad white 

sheep and significantly negatively associated with the North-East monsoon 

rainfall (Table 4.8). 

Comparison of different models with different structures within individual 

categories of models resulted in a slightly better performance of the BYM 

and iid models than the Besag model in Andhra Pradesh and Karnataka.  

Only in Tamil Nadu did the BYM and Besag model outperform the iid 

model.  Within the climate models, the Besag model outperformed the 

BYM and iid models in Andhra Pradesh and Tamil Nadu.  The model with 
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covariates only was the worst performing model in all the individual 

category models (Table 4.7) in all the three states. 

The predicted mean number of outbreaks using the  best BYM state level  

models including covariates  show excellent correspondence with the 

observed mean number of outbreaks for all three states, with a correlation 

co-efficient of r =0.983 for Andhra Pradesh, r = 0.991 for Karnataka and r 

= 0.997 for Tamil Nadu..  The models with covariates only (i.e. no random 

effects) show better correspondence with observed outbreaks for Andhra 

Pradesh and Karnataka (correlation co-efficient of r = 0.76 for Andhra 

Pradesh and r = 0.80 for Karnataka than for Tamil Nadu (correlation co-

efficient of r = 0.60). 
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Land cover variables South India  AP 

 

Karnataka 

 

Tamil Nadu 

 

Post-flooding or 

irrigated croplands    

X X X X 

Rain fed croplands   X X X X 

Mosaic cropland (50-

70%)/vegetation 

(grassland, shrubland, 

forest (20-50%) 

X X X X 

Closed to open (>15%) 

broadleaved evergreen 

and/or semidecidous 

forest (>5m)    

X X X X 

Closed (>40%) 

broadleaved deciduous 

forest (>5m) 

X X X X 

Closed (>40%) needle-

leaved evergreen forest 

(>5m) 

X X X X 

Closed to open(>15%) 

shrub land(<5m)   

X X X X 

Closed to open (>15%) 

grassland   

X X X X 

Artificial surfaces and 

associated areas (urban 

areas>50%)   

X X X X 

Water bodies X X X X 

Table 4.1:  Land cover variables considered in the combined South India model 

and individual state level models.  X indicates variable was considered in the 

variable selection. 
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Host  and breed 

Variables 

South 

India 

Andhra 

Pradesh 

Karnataka Tamil Nadu 

Goat X X X X 

Sheep breeds     

Exotic and cross bred               X X X X 

Bellari           X - X - 

Coimbatore  X - - X 

Deccani  X X X - 

Hassan  X - X - 

Kengur X - X - 

Kilakarsal       X - - X 

Madras Red  X - - X 

Mandy breed  X - X - 

Mercheri breed  X - - X 

Nellore breed  X X - - 

Nilgiri breed  X - - X 

Ramnad white breed  X - - X 

Non-descript    X X             X                X 

Tiruchi.black  X - - X 

Vembur  X - - X 

Indigenous cattle X X X X 

Cross-bred cattle X X X X 

Buffalo                  X X X X 

Table 4.2:  Host and breed variables considered in the combined South India 

model and individual state level models.  X indicates variable was considered in 

the variable selection; - indicates there were few/none of these particular hosts 

in each region and that these hosts were therefore not considered in the variable 

selection. 
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Figure 4.1: Maps of climate variables in southern India: (A) Annual mean temperature (0C) (B) Annual average North-East monsoon 

precipitation (mm) and (C) Average South West monsoon precipitation (mm)   (obtained from Xie et al., 2010).  

 

A B C 
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Figure. 4.2 Maps of district level land use variables in southern India:  (A) Rain fed croplands; (B) closed (>40%) broadleaved deciduous 

forest (>5m) and (C) Water bodies (all obtained from Defourny et al., 2006))  

 

 

A B C 
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Figure. 4.3 Maps of district level host abundance in southern India (all on a loge scale): (A) non-descript sheep (log.e); (B) buffalo 

(log.e); and (C) crossbred cattle (log.e) (obtained from National livestock census 2007). 

 

 

 

A 
B C 
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Model Predictors in model DIC 

(BYM+covariate) 

DIC 

(besag +covariate) 

DIC 

(iid +covariate) 

DIC 

(covariate only) 

BYM only 

Host Crossbred cattle, Buffalo, non-

descript sheep, Bellary breed of 

sheep, Nellore breed of sheep  

202.96 202.57 207.44 600.99  

 

 

 

 

 

 

231.25 

Land-cover Post-flooding or irrigated 

croplands, Rain fed croplands, 

closed  to open (>15%) shrub land 

(<5m), artificial surfaces and 

associated areas (urban areas 

>50%), water bodies 

199.74 199.40 204.62 584.76 

Climate North East monsoon, annual 

monsoon, annual mean 

temperature 

216.27 219.08 216.00 670.87 

Table 4.3: Deviance information criterion (DIC) for the best models of bluetongue severity across South India, where predictors are 

drawn from a single category of environmental predictors. Comparison between Besag-York-Mollie (BYM) model with covariates, 

Besag model, iid model, covariate only model and BYM model without covariates.  
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Model No. Model  DIC pD 

1. BYM +  South West monsoon rainfall, rain fed croplands, closed  to 

open (>15%) shrub land (<5m), water bodies, Bellari breed of sheep, 

non-descript sheep, buffalo, crossbred cattle and Nellore 

196.84 43.67 

2. South West monsoon rainfall, rain fed croplands, closed  to open 

(>15%) shrub land (<5m), water bodies, Bellari breed of sheep, non-

descript sheep, buffalo, crossbred cattle and Nellore 

486.46 9.963 

3.  BYM only model (no covariates) 231.25 61.48 

Table 4.4: Final model of bluetongue severity across south India which includes the best combination of host, climate and landscape 

predictors (top row). The DIC and pD (Effective number of parameters) for this model (BYM + covariates, Model 1) are compared to 

models containing BYM only (Model 3) or covariates only model (Model 2). 
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Effects Mean(sd) Credible interval 

Fixed effects   

Intercept -27.32(11.63)    -51.72, -5.87 

South West monsoon 

rainfall 

-0.0017  (0.0008)     -0.0035,  -0.0002   

Rain fed croplands 1.54 (0.51)      0.54,   2.59   

Closed to open (>15%) 

shrub land(<5m) 

-2.59( 1.25)     -5.17,  -0.20   

Water bodies -4.14  (2.69)     -9.74, 0.87  

Bellary breed of sheep 0.15  (0.13 )    -0.09,   0.41    

Non-descript sheep 0.26  (0.45 )    -0.60,   1.19    

Buffalo  0.64  (0.46)     -0.24,   1.58   

Crossbred cattle  0.59 (0.40 )    -0.18, 1.43   

Nellore breed of sheep 0.37 (0.14)      0.094 ,  0.67   

Random effects   

Spatial component 0.26   (0.08)    0.13 ,    0.48    

Unstructured component 1898.39(1854.17)   125.70,  6760.08   

Table 4.5: Mean coefficient values and credible intervals for fixed effects 

environmental predictors which describe the average annual number of 

bluetongue outbreaks per district for the best model for South India.  Significant 

credible intervals (i.e. those that do not span the value zero) are in bold. 



124 
 

                            

 

Figure. 4.4 (A) Observed average annual number of outbreaks in South India from PD_ADMAS; and (B) Predicted average annual 

number of outbreaks from the best model. 

A B 
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 Mean(sd) Credible interval 

Fixed effects   

Intercept -8.37(6.57)    -22.31,  3.86 

Buffalo 1.51(0.57)      0.43,   2.72   

Exotic& crossbred 

sheep 

0.3091(0.08)      0.14,   0.49   

Goat  2.13(0.76)      0.76,   3.81   

Closed (>40%) 

broadleaved deciduous 

forest (>5m) 

-0.98(0.33)     -1.68,  -0.34 

Artificial surfaces and 

associated areas (urban 

areas>50%) 

3.93(1.68)      0.68,   7.36  

Random effects   

Precision for 

unstructured component 

1805.29(1780.88)  116.35,  6531.88    

Precision for structured 

component 

2.16  (1.59)    0.49,     6.36     

Table 4.6: Mean coefficient values and credible intervals for fixed effects 

environmental predictors which describe average annual number of bluetongue 

outbreaks in Andhra Pradesh for the best subset models across the land-cover, 

climate and host categories.  Significant credible intervals (i.e. those that do not 

span the value zero) are in bold.   
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 Mean(sd) Credible 

interval 

Fixed effects   

Intercept -21.80(7.30)    -38.14, -9.24 

Non-descript sheep 3.00(0.94)      1.30,  5.06    

Exotic and crossbred 

sheep 

1.16(0.35)     0.52,   1.91   

Mandya breed of sheep -0.75(0.31)    -1.45,  -0.18  

Crossbred cattle 1.25(0.99 )    -0.47,   3.48   

Random effects   

Precision for 

unstructured 

component 

1.43 (1.019 )    0.33 ,    4.10     

Precision for structured 

component 

1858.04 (1836.24)   126.72,  6698.38    

Table 4.7: Mean coefficient values and credible intervals for fixed effects 

environmental predictors which describe average annual number of bluetongue 

outbreaks in Karnataka for the best subset models across the land-cover, climate 

and host categories. Significant credible intervals (i.e. those that do not span the 

value zero) are in bold. 
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Fixed effects Mean(sd) Credible 

interval 

Intercept -15.53(9.17)    -35.38, 0.92 

Nilgiri breed of sheep 0.42(0.26)     -0.07,   0.97    

Ramnad white breed 

of sheep 

0.85(0.27)      0.35,  1.43    

North –East monsoon 

rainfall 

-0.03(0.01)    -0.05,  -0.01  

Annual mean 

temperature 

0.05(0.03)     -0.008,   0.12   

Precision for 

unstructured 

component 

1819.30(1774.23)   122.71,  6530.29   

Precision for 

structured component 

0.54    (0.28)     0.16 ,    1.26      

Table 4.8: Mean coefficient values and credible intervals for fixed effects 

environmental predictors which describe average annual number of bluetongue 

outbreaks in Tamil Nadu for the best subset models within the land-cover, climate 

and host categories.  Significant credible intervals (i.e. those that do not span the 

value zero) are in bold.                            

4.4 Discussion and Conclusion 

 

This study is the first of its kind to explain spatial patterns in BT severity 

in South India in relation to a full range of important environmental 

variables.  The results indicate that host and landscape heterogeneity are 

much more important in determining spatial patterns in BT severity in 

South India than is spatial heterogeneity in climate conditions.  Although 

monsoon conditions undoubtedly contribute to the disparity in severity of 

BT between North India (little affected by monsoons) and South India 

(heavily affected by monsoons, see Prasad et al., 2009), the analysis here 

indicates that host and landscape predictors come into play at finer spatial 

scales.  The finding that models combining different suites of 
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environmental predictors (namely host, climate and landscape predictors) 

out performed those based on single suites of  predictors illustrates the 

value of considering all potential environmental variables in the same 

model framework (Acevedo et al., 2010; Purse et al., 2012). 

Considering the combined South India model, districts with a higher land-

cover of rain fed croplands suffered significantly more BT outbreaks, 

probably because such landscapes are more likely to contain suitable 

breeding habitats and hosts of the Culicoides biting midge vectors.  

Although the vectorial capacity of the different Culicoides species has not 

been well studied in India, three key species, C. imicola, C. peregrinus, and 

C. oxystoma seem to be abundant in BT-affected areas (Reddy & Hafeez, 

2008).  Populations of C. imicola and C. peregrinus that both breed in moist 

soil are significantly associated with irrigated areas or areas with high soil 

moisture availability elsewhere (Acevedo et al., 2010). C. oxystoma, which 

breeds in buffalo dung (Narladkar et al., 2006), and its larvae, have been 

found in both active and abandoned rice paddy fields (encompassed by the 

irrigated cropland class) elsewhere in Asia (Yanase et al., 2013).  

Surprisingly, areas with relatively high annual monsoon rainfall in South 

India had lower numbers of outbreaks.  This may be because these higher 

rainfall regions (Fig. 4.1c), for example the western Ghat forests, support 

very low densities of sheep and other livestock, and therefore probably 

support low populations of livestock-associated Culicoides species, leading 

to fewer or no BTV outbreaks.  

The finding of different variables selected in each state supports our 

rationale behind fitting state level models.  In the Andhra Pradesh model, 
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host and land cover variables dominate and climate variables are less 

important.  The host and breed variables dominate in the Karnataka model 

over land cover or climate variable models.  Finally, in the Tamil Nadu 

model, host and climate variables were more important than land cover 

variables.  Except for exotic & crossbred sheep selected in Andhra Pradesh 

and Karnataka, other host variables were not shared in common with the 

other state models.   Land cover variables were selected only in Andhra 

Pradesh and not in Karnataka and Tamil Nadu.  Climate variables were 

selected only in Tamil Nadu (North-East monsoon rainfall and Annual 

mean temperature) and not in the other two states.     

Buffalo and goat are more abundant in Andhra Pradesh than in Karnataka 

or Tamil Nadu.   The Mandya breed of sheep (selected in Karnataka) is 

absent in Andhra Pradesh and Tamil Nadu.  Similarly, the Nilgiri breed and 

Ramnad white breed of sheep (present in Tamil Nadu) are absent from the 

other two states.  Tamil Nadu receives the highest North East monsoon 

rainfall compared to the other two states (Fig 4.1B).   

In Andhra Pradesh, BT outbreaks at the district level were negatively 

associated with higher percentage coverages of closed broadleaved 

deciduous forest (Fig. 4.2B).  This again may be because such habitats are 

less suitable for Culicoides, or contain fewer hosts. 

 The positive effects of exotic and crossbred sheep on outbreak numbers in 

Karnataka and Andhra Pradesh are consistent with previous findings of the 

high susceptibility of  such breeds in India (Lonkar et al., 1983), and the 

restriction of past  disease cases in South-East Asia to European sheep 
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breeds (Daniels et al., 2003).  Antibodies against BTV are reported in local 

breeds in Indonesia and Malaysia without any clinical signs of disease 

(Hassan et al., 1992; Sendow et al., 1991), suggesting that local breeds are 

susceptible to infection (and hence may act as efficient hosts of BTV), with 

the result that BT presence, when recorded only on the basis of clinical 

signs (the most frequent way of reporting BT across the whole of India), 

will be under-reported where these breeds are common.  The strong and 

positive association of BTV outbreaks with goat populations in Andhra 

Pradesh is interesting because small and marginal farmers practice mixed 

farming of sheep and goat with other livestock.  A high sero-prevalence in 

this species (goat) without clinical signs has been reported by (Arun et al., 

2014; Bitew et al., 2013).  A similar finding applies to buffaloes (positively 

associated in the models with BTV outbreaks in AP only), which also 

demonstrate a high seroprevalence without clinical disease (Kakker et al., 

2002).  Thus, both goats and buffaloes may be important reservoir hosts of 

BTV in Andhra Pradesh.  It is probable that the extensive rice belt found in 

Andhra Pradesh (the state most severely affected by BT), that supports high 

buffalo populations (Fig. 4.4 A) and likely high populations of C.oxystoma, 

makes a substantial contribution to maintaining BT transmission.   

Different local breeds in each state seem to be important in the local 

transmission of BTV.  Nellore sheep abundance was a significant variable 

in the Andhra Pradesh model (Table 4.4).  A more clinically severe form of 

the disease has been reported in this breed compared to other breeds (Rao 

et al., 2014).  
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The selection of the Ramnad white breed of sheep in Tamil Nadu is 

interesting because this breed along with Trichy black has also been shown 

to be more susceptible to bluetongue compared to other indigenous breeds 

(Prasad et al 2009; Rao et al., 2014). 

A large proportion of the variance described by the spatial random effects 

was explained by structured heterogeneity (>99%, versus the unstructured 

heterogeneity) in the South India model.  This suggests that either intrinsic 

processes such as disease spread between districts, or unmeasured spatially 

structured environmental predictors drive district-level disease patterns. 

The latter could include soil (soil type and water retention capacity) or 

animal husbandry factors (dung management and use as fertiliser, local 

drainage and flooding), that may influence breeding site availability and 

abundance of potential vectors. The importance of spatial structure is also 

supported by the better performance of the BYM and Besag models over 

the i.i.d.  models (Table 4.1).  The contribution of different random effect 

components (structure and unstructured heterogeneity) also varies with 

each state.  Structured heterogeneity is important in the Andhra Pradesh 

and Tamil Nadu models compared to unstructured heterogeneity within 

each state, and vice-versa in Karnataka.  The probable reasons for 

dominance of unstructured heterogeneity in Karnataka is the influence of 

different farm/village level practices which influence the breeding of 

midges and also their abundance. 

Thus, state-specific models are required to understand the role of different 

variables in determining the severity of BTV outbreaks in South India and 

also other states of India which are not only different in their eco-
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epidemiological factors but also different in their disease surveillance 

systems, the latter partly because of the varying number of veterinary 

hospitals and disease diagnostic laboratories in each state.  The use of state-

specific models is also justified because of the existence of different 

reporting systems and awareness of bluetongue virus in the different states.  
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                                         Chapter 5 

Understanding the inter-annual 

spatio-temporal risk factors for 

bluetongue outbreaks across South 

India using Bayesian Poisson 

regression modelling. 
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5.1 Introduction 

 

The role of climate in driving inter-annual variability of bluetongue 

outbreaks in space and time is not well known globally, especially in 

endemic countries (Coetzee et al., 2012).  A sequence of droughts followed 

by floods seems to explain the variability of a related midge-borne 

orbivirus, African horse sickness virus (AHSV), in Africa (Baylis et al., 

1999b).  The factors determining the inter-annual variability in the BTV 

outbreaks in South India at district level are not well known, but may 

include long term changes in climate, particular sequences of dry and wet 

years, or a waxing and waning of herd immunity.  The role of climate along 

with host and land cover in determining spatio-temporal variability in 

outbreaks is addressed in this Chapter by using a Bayesian Generalised 

Linear Mixed model accounting for spatial and temporal autocorrelation.  

The resulting model will be helpful in making forecasts and possibly in the 

development of an early warning system for the disease in India. 

Understanding the spatial and temporal epidemiology of BTV in South 

India independently has helped to identify the mechanisms and factors 

responsible for variation between districts in space and over time within a 

state (Chapters 4 and 3 respectively).  Seasonality of outbreaks is driven by 

precipitation, whereas spatial heterogeneity is driven by a combination of 

host, land cover and climate factors.  Furthermore, the previous Chapters 

have shown how BTV outbreaks could be adequately forecast in space and 

time independently.  What is important to establish now is whether or not, 
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and if so how, these factors operate together in space and time.  This will 

help us to predict BTV outbreaks more accurately in the future.  

Climate heterogeneity, especially monsoon variability in space and time in 

India is well known (Kumar et al., 1992).  There are many studies showing 

the importance of climate in vector-borne disease outbreaks, an importance 

which is made very clear by the basic Reproductive number  (R0) formula 

for such diseases (Hartemink et al., 2009), in which many parameters and 

variables refer to demographic and other processes in the life cycle of the 

vectors which are very susceptible to climate.  The quantification of the 

relationships between weather, climate and vector-borne diseases naturally 

leads to the development of Disease Early Warning Systems (DEWS) to 

forecast such diseases in operationally useful ways.  Early Warning 

Systems (EWS) in general have been developed for forecasting famines, 

forest fires and hurricanes (Roger, 1997).  Forecasting infectious disease 

outbreaks goes back to as early as 1920’s in India, where malaria was 

predicted on a district by district basis using data on past malaria outbreaks, 

market prices of food and long term meteorological data (Myers et al., 

2000).  This application - probably the best example of a long term, 

accurate space and time disease forecasting service – fell into disuse at the 

end of the 1940s when alternative methods (e.g. new insecticides) became 

available for combating the disease.  Relatively few DEWS have been 

developed since the 1940s and the majority of these make predictions in the 

time domain only (Chaves & Pascual, 2007; Medina et al., 2008) and more 

rarely in both the space and time domains (Thomson & Palmer et al., 2006). 



136 
 

The role of El-Nino in outbreaks of vector borne diseases has been reported 

in many studies (Hales et al., 1999; Chaves & Pascual 2007), but it is 

unlikely that El-Nino itself has a direct impact on the diseases concerned, 

instead acting indirectly via its effects on important climate variables, 

especially rainfall, floods and droughts (Dilley & Heyman, 1995).  In other 

work, a strong  and significant association was found between a particular 

sequence of drought and flooding events  in 13  of the 14 African Horse 

sickness virus outbreaks  over two centuries in Africa.  This sequence of 

events was attributed to the El Niño/Southern Oscillation (ENSO) (Baylis 

et al., 1999b).  There is a report of strengthening of relationship between 

ENSO and North-East monsoon rainfall in South India and Sri Lanka 

(Zubair & Ropelewski, 2006) compared to the weakening of the 

relationship with South-West monsoon (Kumar et al., 1999) and there was 

significant correlation between Nino-3 ENSO index and North-East 

monsoon rainfall in comparison to the past ENSO events (1982, 1987, 

1997) (Zubair & Ropelewski, 2006).  El-Nino’s role in the Indian monsoon, 

especially in South India, has already been demonstrated (Annamalai et al., 

2007; Rasmusson & Carpenter, 1983).  The relationship between ENSO 

and the All India Rainfall index (AIR), which is area-weighted seasonal 

average of South-West monsoon rainfall is predominant.  The AIR index is 

typically (not always) below (above) normal during El Niño (La Nina) 

years (Annamalai et al., 2005).   

It is important to understand the purpose, scale and feasibility of 

implementing an operational DEWS.  There needs to be systematic 

integration of epidemiological surveillance data, environmental and other 



137 
 

observations and they should be assessed within a model framework (Burke 

et al., 2001).  Currently, a system exists in India for forecasting the presence 

or absence of bluetongue and other diseases two months in advance 

(www.nadres.in) at the district level.  The system does not predict the 

number of outbreaks of bluetongue and the model performance statistics 

are not documented.   

 Host and land cover heterogeneity was important in determining the spatial 

risk of bluetongue (Chapter 4), but whether or not these factors also play 

an important role when considered as static variables in spatio-temporal 

models is not known.  Thus, quantifying the role of climate, host and land 

cover in determining the inter-annual variability of bluetongue outbreaks 

in each district in different years will help to develop early warning system 

for the disease in India. 

5.1.1 Space-time analysis of epidemiological data 

 

Regression methods for spatio-temporal analysis depend on whether the 

response variable is count data, or presence and absence data, or a 

continuous variable.  Count data are most often modelled assuming a 

Poisson distribution in a standard GLM (Generalised Linear Model).  The 

Poisson distribution assumes that the mean and variance are equal; when 

they are not equal there is either under dispersion (sample variance<mean) 

or over dispersion (sample variance>mean).  Aggregated count data in 

epidemiology are often over dispersed (Clements et al., 2006) and this over 

dispersion is sometimes referred to as extra-Poisson variability.  Failure to 

account for over dispersion can lead to bias in estimates.  The extra-Poisson 

http://www.nadres.in/
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variability can arise for many reasons, for example due to the presence of 

spatial and temporal autocorrelation in the situation where the data were 

gathered (country, district or region; over days, months or years) or to the 

lack of information about an important predictor variable in space and time 

(unobserved covariate). 

 Extra-Poisson variability can be accounted for by using modifications of 

the Poisson model such as zero-inflated models (Zuur et al., 2009) or by 

choosing an alternative model such as a negative binomial one (Clements 

et al., 2006).  Both sorts of model are capable of generating over dispersion, 

where there are more zeroes (no outbreaks) and more very high values 

(multiple outbreaks) than is the case for a Poisson distribution with the 

same mean.  The negative binomial distribution model is a modification of 

the Poisson model involving an extra parameter (commonly given the 

symbol ‘k’) to account for the obvious ‘clumping’ of the data (k=0 for 

highly clumped data and k =∞ for the Poisson distribution).  Interpretation 

of extra-Poisson variability is often difficult in zero-inflated or negative 

binomial model outputs.  In addition, the same results can be obtained by 

combining a series of Poisson distributions each with a different mean (and 

hence variance). 

Extra-Poisson variability can be accounted for by including spatial and 

temporal autocorrelation in a Generalised linear mixed model (GLMM).  

The spatial and temporal autocorrelation parameters can be modelled as 

fixed parameters using maximum likelihood estimation in the frequentist 

domain or as random parameters in the Bayesian domain (Clayton, 1996). 
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The presence of extra-Poisson variability, even after accounting for spatio-

temporal autocorrelation, may lead to bias in estimates.  Extra-Poisson 

variability can arise due to the absence of one or more predictor variables 

which interact in both spatial and temporal domains (structured interaction) 

or it can arise due to absence of one or more predictor variables which 

interact independently, without spatial and temporal structure.  These 

interaction terms cannot be modelled using maximum likelihood 

approaches, but can be modelled in a Bayesian hierarchical framework by 

specifying priors for each parameter (spatio-temporal interactions). 

There are many ways of introducing space-time interactions in Bayesian 

disease mapping (Assunção et al., 2001; Martínez‐Beneito et al., 2008).  

Bayesian Generalized linear mixed models (GLMM) using the Besag-

York-Mollie (BYM) (Besag & Newell, 1991) model, discussed in chapter 

4, can be extended in space-time by incorporating temporal dependence 

(Bernardinelli et al., 1995; Richardson et al., 2006).  The basic BYM space-

time model assumes that spatial and temporal dependence act 

independently of each other.  An extension of the model overcomes this 

problem by separately modelling spatial dependency, temporal dependency 

and different interaction terms through prior distributions (Knorr-Held, 

1999). 

There are many advantages of Bayesian space-time methods to account for 

spatial and temporal heterogeneity in species’ distribution modelling 

(Gelfand et al., 2005), disease ecology (Waller et al., 2007) and wildlife 

diseases (Farnsworth et al., 2006).  In studies of disease ecology, such as 

those for Lyme disease (Waller et al., 2007),  the inclusion of spatio-
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temporal components in a Bayesian framework resulted in better 

understanding of disease spread in space and time than in the model without 

spatio-temporal structure.  

The Bayesian GLMM (with interaction terms) can account for different 

heterogeneities and missing covariates as well as the fixed effects of 

environmental predictors and was therefore used in the present analysis.  

This chapter uses the Bayesian GLMM model fitted in INLA (Integrated 

Nested Laplace Approximation) (Blangiardo et al., 2013), to investigate the 

role of climate, land cover and host variables in  the inter-annual variability 

of BTV outbreaks in South India, in order to answer the following questions 

1. Are outbreaks restricted in either time or space (i.e. to certain times, 

or to certain districts only), or do they occur randomly in both time 

and space?  

2. Is the severity of BTV outbreaks greater in years when there is a 

sequence of extreme events such as dry years (high temperature and 

low rainfall)  followed by wet years (low temperature and high 

rainfall)? 

3.  Is there any significant correlation between periodicities in the Sea 

Surface Temperature (SST, one of the measured El Nino variables) 

and different monsoon conditions and, if so, how does it vary 

between the three states of South India? 

4. Do the roles of host and land cover remain strong (as in spatial 

analysis) in describing inter-annual variability in bluetongue 

outbreaks in different districts when considered as static variables? 
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5. Can adequate forecasts (with low RMSE error and high correlation 

between observed and predicted outbreaks on out-of-fit data) be made 

for use in early warning systems for the disease in India? 

5.2 Materials and Methods 

5.2.1 Disease data 

 

District level (admin-2) monthly BT outbreak data (1992-2009) were 

provided by PD_ADMAS (Project Directorate on Animal Disease 

Monitoring and Surveillance) which maintains the livestock diseases 

database for India and collates outbreak data every month from different 

sources.  The monthly data were aggregated to a yearly level and the sum 

of all bluetongue outbreaks occurring each year in each district was 

modelled as the dependent variable.  The district level outbreak data were 

summarised at the annual level because there was sparseness in the 

outbreaks (there were no outbreaks in many districts and months).  These 

yearly bluetongue outbreak data were divided into training (1992-2007) 

and test data (2008 and 2009) to test model accuracy.  In the time series 

analysis (chapter 3), the years 2008 and 2009 were not included in the ‘out-

of-fit’ forecast because only Andhra Pradesh (no outbreaks reported in 

2009) was included in the analysis, but in this chapter the other two states 

(Karnataka and Tamil Nadu) are included in the analysis and there were 

reports of BTV outbreaks in these two states for the years 2008 and 2009. 

5.2.2 Predictor variables 

Yearly annual mean maximum temperature (i.e. the average of the 12 

monthly maximum temperatures) and the yearly sum of monthly 

precipitation data (1992-2009) were obtained from the Climatic Research 
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Unit (CRU) (5°×5° gridded data), University of East Anglia, UK (Harris et 

al., 2014) and extracted in the zonal statistics option in ArcMap 10.1 (ESRI, 

Inc., Redlands, CA, U.S.A.) by specifying districts (admin level 2).  The 

annual mean maximum temperature (0C) and annual total rainfall (mm) 

were each lagged by zero, one and two years. 

State-wide annual monsoon rainfall (Jan-Dec), South-West monsoon 

rainfall (June-Sept) and North-East monsoon data (Oct-Dec) from 1901-

2000 were purchased from the Indian Meteorological Department for 

investigating the correlation between dominant frequencies of the rainfall 

and Sea Surface Temperature (SST) data.  Rainfall data were used for the 

years 1949-2000 because the El-Nino data are only available from 1949.  

Hence the wavelet analysis was restricted to these years. 

The term ‘El-Nino’ is applied to the warm phase of ENSO and ‘La Nina’ 

to the cold phase of ENSO.  The Nino 3 region covers the geographical 

region between 50N-50S, 900-1500W, i.e. a ten degree equatorial band in 

the eastern Pacific Ocean.  The monthly sea-surface temperature (SST) data 

(1949-2000) were obtained from the Japan Meteorological Agency (JMA) 

(Ishii et al., 2005) as mentioned in chapter 3. The annual averages of the 

monthly sea surface temperature (El-Nino 3) data were calculated and used 

in the analysis. 

 The proportional area of each district covered by  ten  land-cover classes 

as described in the spatial analysis Chapter were extracted from the 

GlobCover land-cover map (Defourny et al., 2006) using zonal Statistics in 

ArcMap 10.1 (ESRI, Inc., Redlands, CA,U.S.A.), and were logit-
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transformed.  These ten classes were considered for selection in the 

individual land-cover category model. 

The host variables used in this analysis (in each case total numbers) were; 

local breeds of sheep, exotic & cross bred sheep, non-descript sheep, 

indigenous cattle, crossbred cattle, buffalo and goat population.  The 

indigenous breeds encompass all the fourteen local breeds of South India.  

The breeds selected in the spatial analysis were specific to each state, 

therefore it was decided to combine all the local breeds from three states of 

South India to be considered in the variable selection procedure.  The host 

variables were used as static variables for all the years under study, because 

the livestock census is carried out only every five years. 

5.2.2 Exploratory data analysis 

Displaying data in space and time is important to discriminate between 

endemic and hyper endemic years.  It also helps to understand the changes 

over time and also the spatio-temporal patterns in the data.  The space-time 

multi panel plots were generated using the space-time package in R 

(Pebesma, 2012).  The yearly mean of the outbreaks in all the districts were 

calculated to determine the criteria for deciding whether a year was hyper-

endemic or endemic.  Years with means above the overall mean were 

considered as hyper-endemic years and years with means equal to or below 

the overall mean were considered as endemic years.   

Wavelet analyses and wavelet coherence (correlation) analyses of annual 

average El-Nino 3 temperature data and annual & seasonal (South-West 

monsoon, North-East monsoon) rainfall data were conducted for the three 
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different states separately to identify the correlation between the local 

dominant frequencies.  The annual and seasonal rainfall variables for 

Andhra Pradesh, Karnataka and Tamil Nadu were subjected to wavelet 

coherence analysis with the sea surface temperature data to identify any 

significant wavelet coherence (correlation) and whether the correlation 

changes with each state.  

5.2.3 Modelling approach 

 

Relationships between the annual number of outbreaks in each district and 

environmental factors were quantified using a Generalised linear mixed 

model with Poisson errors, implemented in a Bayesian framework.  

Different models were fitted, with different spatial and temporal random 

effects and interactions of these effects.  The probability function for Y, the 

mean number of BTV outbreaks, is given by 
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Where 0  is the intercept and 1 to n  are the co-efficients for the fixed 

effects of predictors ( itx1  to nitx ) every year in each district. i  is the 

structured spatial component assuming Besag-York-Mollie (BYM) 

specification (Besag et al 1991), modelled using an intrinsic autoregressive 

structure (iCAR).  )(iN  is the number of districts that share boundaries 

with the i-th one (i.e. its neighbouring districts).  si  is the unstructured 

Spatial structured and 

unstructured heterogeneity 

Temporal structured and 

unstructured heterogeneity 
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spatial effect in each district modelled using an exchangeable prior, si

~ Normal (0,  
2).  

t  is the structured temporal component assuming (i) an AR (1) structure 

(Diggle, et al., 2002a); (ii) stationarity of the data over time and (iii) all the 

observations are regularly spaced in time.  t is the unstructured temporal 

heterogeneity in each district modelled using ),0(~ 2

Nst  

Let  yit  denote the number of  outbreaks occurring in year t t(t=1,….T) in 

each district i  (i=1,….I).  It is  assumed that the number of outbreaks yit for 

district i, in year t, has a Poisson distribution with parameters  µit and 

probability πit with a log link, where linear predictor µit decomposes 

additively into time and space dependent effects. 

Extra-Poisson variability as discussed earlier can be explained by inclusion 

of spatial and temporal structured dependency in space and time 

respectively (Eq 1).  When there is presence of extra-Poisson variability in 

the data even after accounting for spatial and temporal autocorrelation, 

additional parameters are required to account for this residual variability.  

The residual spatio-temporal variability can be accounted for by including 

certain interaction terms between the structured and unstructured 

components in both space and time respectively.  These additional terms 

can be modelled by including either of four possible types of interactions.  

Thus, addition of any or all of the four types of interaction term leads to (up 

to) five parameters in the model to account for the extra-Poisson variability.  

The first four terms are spatial structured & unstructured heterogeneity and 
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temporal structured & unstructured heterogeneity.  The fifth term will be 

either of the four types of interactions discussed below. 

The interaction parameter  it (i=1,….n, t=1,….T) is added to equation (1) 

to specify either of the four types of interaction.  it is assumed to follow a 

Gaussian distribution with precision matrix  K . K is specified as the 

Kronecker product of the structure matrices of the structured and 

unstructured (of spatial and temporal) components which interact.  The 

Kronecker product is denoted by , which is an operation on two matrices 

of arbitrary size and it is different from routine matrix multiplication. 

Type-1 interaction (independent interaction): In this type of interaction 

(Eq 2), in addition to the spatial and temporal (structured and unstructured) 

heterogeneities, the additional term is the interaction term between the 

unstructured spatial and temporal components.  In this study, it means that 

although there is presence of spatial dependency and temporal dependency, 

there are errors which are not explained by these two terms.  The residual 

errors are explained by the interaction between some omitted risk factors 

which are specific to each year and district without any spatial or temporal 

structure respectively.  This can happen when there are unobserved 

covariates in each district and year, and they do not have any spatial and 

temporal structure.  The omitted factors may be certain farm level factors 

which vary over space and time.  The independent factors can be anything 

which has not been included in the analysis.  
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Here the two unstructured main effects i (temporal) and t (spatial) 

interact. 

Type-2 interaction: In this type of interaction (Eq 3), the temporal 

dependency term interacts with the unstructured spatial component term.  

This means that the outbreaks are not only dependent on the previous year’s 

outbreaks but this temporal dependency also interacts with some 

unobserved district level covariates. 

ninteractio time-space 2- type

(3)log                                          22110





it

itttiinitnititit sxxx




 

Here the structured temporal main effects t  and unstructured spatial 

component i   interact.  

Type-3 interaction:  The detection of type-3 interaction (Eq 4) implies that 

the spatial structure interacts with the unstructured temporal component, 

i.e. the outbreaks spread to nearby districts and interact with missing 

covariates in the time domain modelled by the temporal unstructured 

heterogeneity term. 

ninteractio time-space 3- type

(4)log                                           22110





it

itttiinitnititit sxxx




 

Here the structured spatial component is  interact with the unstructured 

temporal component t   
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Type-4 interaction: In this type of interaction (Eq 5), the spatial and 

temporal structures interact. There is spread of outbreaks between districts 

and this interacts with the temporal dependence of the outbreaks.  This type 

of interaction is relevant to daily/weekly data but may not be important with 

yearly aggregated data because disease in one year at one place may not 

spread next year to neighbouring places and this may happen in short time 

(days or weeks). 

ninteractio time-space 4- type

(5)log                                              22110


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it
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Here the both the structured spatial ( is ) and temporal ( t ) terms interact 

with each other. 

The best model identified from the combination of individual categories of 

predictor model was then tested for the four different types of interactions 

as discussed earlier to capture any residual extra-Poisson variability.  The 

effect of the interaction terms is null if there is no residual extra-Poisson 

variability after accounting for spatial and temporal main effects 

independently (Knorr-Held, 1999).  The interaction terms are always added 

in at the last stage of model building, to capture the extra-Poisson 

variability and to account for missing covariates with either of the four 

types of interaction (Schrödle and Held 2011). 

The best model was used to make predictions on the out of fit data (2008-

2009).  The predictive power  of the model was assessed by calculating 

RMSE (Root Mean Square Error) between observed and predicted 

bluetongue outbreaks on the out of fit data. 
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Model with Negative binomial distribution  

Finally a negative binomial distribution was fitted by including an over 

dispersion parameter to check whether the extra-Poisson variability is due 

to overdispersion in the data and whether it improves the predictive 

performance of the model (Eq 6) with spatial and temporal random effects.  
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5.2.4 Model building 

All possible combinations of models with structured and unstructured 

components of spatial and temporal effects (four components in all; two for 

spatial and two for temporal) were first fitted within land-cover classes 

(1024 combinations), climate (64 combinations) and host categories (128 

combinations) to identify the best models within these categories.  The best 

model was identified within each category as the model with the lowest 

Deviance Information Criteria (DIC) (Spiegelhalter et al., 2002).  Once the 

best model in each category had been identified, all possible model 

combinations (65536) of the best selected predictors were fitted and the 

best combined category model again was identified using DIC (Fig 5.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Variable selection procedure: Best variables were selected from 

individual category (land cover, climate and host) and the final model was 

selected by fitting different combinations of selected predictors.  
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5.3 Results 

5.3.1 Spatio-temporal patterns in bluetongue outbreaks 

 

The space-time multi panel plot shows that the BTV outbreaks occur every 

year (Fig. 5.2) and 60 out of a total of 80 districts reported BTV outbreaks 

on one or more occasions over the 18 year period of the records.  The 

maximum annual number of outbreaks in a single year (2858) in all the 

districts was reported in 1998 followed by 1229 outbreaks in 2005.  The 

time series plots for different districts of South India (Fig. 5.3) show that 

outbreaks occur with varying severity in different districts, with regular 

outbreaks occurring in some districts but not others.   

5.3.2 Comparison of space-time models 

 

Comparison of different models with and without adding spatial and 

temporal random effects within individual categories of models (climate, 

host and land cover) resulted in better performance of models with spatial 

and temporal random effects compared to covariate only models (Table 

5.1).  The model with covariates only was the worst performing model in 

all the individual categories of models.  The model (climate) with 

covariates and spatial & temporal random effects had a lower DIC 

(DIC=9927) than models containing either covariates alone (DIC=29715) 

or by considering only spatial & temporal random effects and not including 

covariates (DIC= 10320) (Table 5.1).   

Within the individual category models, the climate model outperformed the 

host and land cover models, with the latter the worst of the three (Table 

5.1).  The difference between the climate and host model is significant with 
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a drop of 379 DIC units (McCarthy, 2007) and that between the climate and 

land cover models is slightly greater, with a drop of 386 DIC units.  

However, the combined model performed better than the individual 

category models, with a further drop of 8 DIC units. 

The type-1 interaction model was the most parsimonious one among the 

four types of interaction considered.  The best model with type-1 interaction 

performed better than the best model without interaction (Table 5.3).  

The combined model with spatial and temporal random effects shows that 

the bluetongue outbreaks in each district and year are significantly and 

negatively associated with annual precipitation at lag 1 and annual mean 

maximum temperature at lag 0, and are positively associated with 

precipitation at lag 0 and maximum temperature at lag 1 (Table 5.2).  

Densities of non-descript sheep and exotic & crossbred breed of sheep are 

significant and positively associated with bluetongue outbreaks.  None of 

the land cover classes was significant in the final model. 

The predicted number of outbreaks using the best model shows excellent 

correspondence with the observed number of outbreaks (with a correlation 

co-efficient of r =0.8357 for the climate-only model, r= 0.8131 for the host-

only model and r=0.8130 for the land cover-only model) with a BYM 

model (including covariates and spatio-temporal random effects) (Fig. 5.4).  

However, the correlation co-efficient with only covariates and no spatial 

and temporal random effects was lower (of r =0.2173 for the climate-only 

model, r= 0.2289 for the host-only model and r=0.1930 for the land cover-

only model). 
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Comparison of the best model with and without interaction on the basis of 

its predictive performance on out of fit data using root mean square error 

resulted in a better model without interaction in both the years (Table 5.3).  

The models with and without interaction performed better on the out of fit 

data for the year 2008 than for the year 2009. 

The fit of the model on training set (average of 1992-2007) shows good 

correspondence with the observed BTV outbreaks (Fig. 5.4).  Comparison 

of the observed and predicted bluetongue outbreaks for the year 2008 and 

2009 is shown in Fig. 5.5.  The bluetongue outbreaks are predicted in 

districts of all the three states, but the observed outbreaks are shown only 

in a few districts of Karnataka.  

The mean co-efficients of the fixed and random effects of the model with 

negative binomial distribution (Table 5.4) shows that only non-descript 

sheep and exotic & crossbred sheep are positively and significantly 

associated with BTV outbreaks.  Comparison of the DIC between models 

with and without type-1 interaction and the correlation co-efficient between 

observed and predicted outbreaks using the negative binomial model is 

shown in Table 5.5.   

Comparison between the DICs of the model with Poisson structure and the 

Negative binomial  (NB) structure shows the NB model has a lower DIC 

than the model with Poisson errors, but has a poorer correlation co-efficient 

(r2=0.43 versus r2=0.83) between observed and predicted BTV outbreaks.  

The NB model performance is worsened (higher DIC value) when there is 
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inclusion of type-1 interaction and also there is not much improvement in 

the correlation co-efficient from the model without type-1 interaction. 

Wavelet analysis of the annual rainfall time series of three states (Fig. 5.6) 

shows a significant  six to eight year periodicity but for very variable 

periods of time, longer in Tamil Nadu (c. 20 years, Fig. 5.6D) than 

elsewhere.  This periodicity is not significant in any dataset before year 20 

(year 35 for Andhra Pradesh and Karnataka) and does not coincide with 

any significant periodicity in the SST data (Fig. 5.6A) which itself shows 

brief significant periodicities of three to five years only and again only in 

the latter half of the time series.  Thus, even if there is only temporary 

significance of periodicity in the state level rainfall data it seems unlikely 

that the cause of this periodicity is related to the SST in the eastern Pacific 

region.  Correlation between the dominant frequencies of SST and annual 

rainfall in the three states (Fig. 5.7) shows a very brief (< five years) 

significant correlation at a four year periodicity from about year 15 (1964), 

but only in Andhra Pradesh.  This state and Karnataka, but not Tamil Nadu, 

shows a strong correlation, again only temporary, at a periodicity of about 

six to eight years from the beginning of the dataset but fading from about 

year 20/25.  Half or more of these periods are inside the cone of influence, 

COI, (i.e. should not be considered significant).  Finally there is another 

short period of significance at a periodicity of four to seven years from 

about year 40 in Karnataka; again most of this falls inside the COI.  There 

is no sign of a similar periodicity in the other two states.  Tamil Nadu 

appears to be devoid of significant correlations, except briefly, at the start 

of the time series (Fig. 5.7C).  This is also the case for the wavelet 
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coherence analysis of South-West monsoon rainfall in the three states and 

El Nino (Fig. 5.8).  There are virtually no areas of significance outside the 

cones of influence for any state. 

The situation for the North East monsoon, however, is quite different (Fig. 

5.9).  In all three states there is a strong coherence between this variable 

and El Nino for the years 15 to 40 (i.e. years 1964 to 1989).  Interestingly, 

the strongest correlation is for periodicities of 3 to 4 years initially, rising 

to 4 to 6 years by the end of this interval (year 40, 1989), continuing (non-

significantly) to the end of the recording period (year 51, 2000).  There are 

also signs of a strong correlation at a periodicity of 8 years for the first 15 

years in each state, but this is mostly inside the cone of influence.  There 

are few signs of this periodicity after year 15, when the 3 to 4 year 

periodicity ‘takes over’. 
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Figure 5.2: Bluetongue outbreaks in South India (1992-2009).The outbreak data 

were log.e transformed. 
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Figure 5.3: Bluetongue outbreaks from 1995 to 2006 in different districts of south 

India (1-79).The X-axis indicates different years and Y-axis indicates loge (natural 

logarithm) transformed BTV outbreaks.   
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Model Predictors in the model DIC (spatial and 

temporal 

random effects) 

DIC (covariates 

only) 

Correlation co-

efficient (with 

spatial and 

temporal random 

effects) 

Correlation co-

efficient 

(covariates only) 

Climate  Maximum temperature at 0, 1 &2 lag 

and precipitation at 0 & 1 

9927.53 29715.75 0.8357 0.2173 

Host Non-descript sheep, exotic & 

crossbred sheep, Indigenous cattle, 

Crossbred cattle and Buffalo 

10306.99 28081.27 0.8131 0.2289 

land cover Post-flooding or irrigated croplands, 

rain fed croplands, Mosaic 

croplands(50-

70%)/Vegetation(grassland, shrub 

land, forest) (20-50%), closed to open 

(>15%) broadleaved evergreen and/or 

semi-deciduous forest(>5m), closed 

(>40%) broadleaved deciduous forest 

(>5m), closed (>40%) needle leaved 

evergreen forest (>5m) 

10313.39 30378.19 0.8130 0.1930 

Table 5.1: Deviance information criterion (DIC) and correlation co-efficient for the best models, where predictors are drawn from a single 

category of environmental predictors. Comparisons between models with spatial & temporal random effects and covariates, with covariate 

only models. 
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Variable Mean (sd) Credible interval 

(CI) 

Intercept -45.1435 (5.2210)    -55.7594(-35.2500) 

Precipitation at lag 0 0.0009  (0.0001)     0.0006,  0.0011    

Precipitation at lag 1 -0.0004  (0.0001)     -0.0006 , -0.0001   

Maximum temperature at lag 

0 

-1.79  (0.14 )    -2.08 , -1.50   

Maximum temperature at lag 

1 

2.65  (0.16)      2.34 ,  2.98    

Non-descript sheep 2.82  (0.52  )    1.82,    3.90   

Exotic and crossbred sheep 0.61  (0.20 )     0.21, 1.01   

Mosaic croplands(50-

70%)/Vegetation(grassland, 

shrub land, forest) 

-13.19  (8.06 )   -29.47, 2.30 

closed (>40%) broadleaved 

deciduous forest (>5m) 

2.84 (13.56)  -23.87 ,  29.54    

closed (>40%) needle leaved 

evergreen forest (>5m) 

1.38 (31.55)    -60.56,    63.29   

Random effects   

Spatial unstructured random 

effects 

1.77( 4.10)      0.1095, 2.6944 

Spatial structured random 

effects 

1931.56 (1877.46)   143.23, 6859.3 

Temporal structured random 

effects 

18234.55 (18140.90) 1280.7313, 66064.10 

Temporal unstructured 

random effects 

0.4647 (0.161)  0.2143, 8.371 

Table 5.2: Mean coefficient values along with their standard deviation(sd) and 

credible intervals for fixed effects of environmental predictors with spatial and 

temporal effects (structured and unstructured components)which describe sum of 

annual number of bluetongue outbreaks per district (values in bold indicate that 

they are significant because the CIs do not bridge zero). 
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Model DIC pD r2  on 

training 

data 

r2  on test 

data 

Root mean 

square 

error 

2008 2009 2008 2009 

Best 

model 

without 

type-1 

interaction 

9919.04 85.98 0.83 0.19 

 

-

0.031 

13.66 

 

17.99 

Best 

model 

with type-

1 

interaction 

1940.31 420.72 0.99 0.35 

 

-0.03 60.49 

 

56.25 

Table 5.3: best model with and without interaction along with their DIC’s, pD 

(effective number of parameters), and the squared correlation- co-efficient (r2) 

between observed and predicted data, and Root mean square error on the test 

data 
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Variable Mean (sd) Credible interval (CI) 

Intercept -21.10 (6.91 )   -34.95, -7.69 

Precipitation at lag 0 -0.0011 (0.0006)    -0.0023,  0.0001   

Precipitation at lag 1 0.0003  (0.0007)     -0.0010,  0.0016    

Maximum temperature at lag 

0 

-0.85  (0.64)     -2.09,  0.42   

Maximum temperature at lag 

1 

0.98  (0.64)     -0.30,    2.22    

Non-descript sheep 3.01  (0.47)      2.12,  3.98   

Exotic and crossbred sheep 0.56  (0.17 )     0.23,   0.91    

Mosaic croplands(50-

70%)/Vegetation(grassland, 

shrub land, forest) 

-5.77  (7.01 )   -19.94, 7.71   

closed (>40%) broadleaved 

deciduous forest (>5m) 

8.51(11.71)   -14.44,   31.68  

closed (>40%) needle leaved 

evergreen forest (>5m) 

-0.22 (31.53)    -62.13,  61.62   

Random effects   

Over dispersion parameter 0.23 (2.06) 0.19,    0.27  

Spatial unstructured random 

effects 

0.30(8.25) 0.17,   0.49   

Spatial structured random 

effects 

1699.45(1.71) 114.04, 6276.72 

Temporal structured random 

effects 

0.42(1.63) 0.16,    0.79   

Table 5.4: Mean coefficient values along with their standard deviation(sd) and 

credible intervals for fixed effects of environmental predictors with spatial and 

temporal effects (structured and unstructured components)which describe the sum 

of annual number of bluetongue outbreaks per district (values in bold indicate 

that they are significant because the CIs do not bridge zero) using a negative 

binomial distribution model. 
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Model DIC pD r2  on 

training 

data 

Negative 

binomial model 

without type-1 

interaction 

2656.26 71.22 0.426 

Negative 

binomial model 

with type-1 

interaction 

2662.82 68.91 0.423 

Table 5.5: Negative binomial model with and without interaction along with their 

DIC’s, pD (effective number of parameters), and the squared correlation- co-

efficient (r2) between observed and predicted data. 
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Figure 5.4: Comparison of the observed (A) average BTV outbreaks (1992-2007) 

with (B) fitted outbreaks using best model with spatial and temporal random 

effects.
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Figure 5.5: observed and predicted bluetongue outbreaks using the model from best combination of variables with spatial and temporal 

random effects on the “out of fit” data for two years (2008 & 2009). (A) Observed bluetongue outbreaks for the year 2008 (B) Predicted 

outbreaks for the year 2009 (C) observed bluetongue outbreaks for the year 2009 and (D) observed bluetongue outbreaks for the year 

2008.
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Figure 5.6: Wavelet power spectra of- the time series of annual rainfall in three 

Indian states & of the annual sea surface temperature in the eastern Pacific 

region. The white dotted line is the cone of influence indicating the region of time 

and frequency where the results are not influenced by the edges of the data and 

are therefore reliable (these areas are within the bullet shape formed by the two 

white lines and are said to be ‘outside the cone of influence’; all other areas, 

physically outside the bullet shape, are ‘within the cone of influence’ of edge 

effects, and so are not reliable). The solid black line corresponds to the 95% 

confidence interval and the areas within this black solid line indicate significant 

variability at the corresponding periods (y-axis, in years) and time (x-axis, in 

years from 1949 (= Year 1). (A) Wavelet power spectrum of the El-Nino time 

series. (B) Wavelet power spectrum of the Andhra Pradesh annual monsoon 

rainfall time series. (C) Wavelet power spectrum of the Karnataka annual 

monsoon rainfall time series. (D) Wavelet power spectrum of the Tamil Nadu 

annual monsoon rainfall time series. The wavelet spectrum is shown with power 

increasing from blue to red colours. X-axis: time in years from the start of the time 

series (1949), Y-axis: periodicity, years. 
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Figure 5.7: Correlation (Cross-wavelet coherence) between dominant frequencies in the annual rainfall time series & annual sea surface 

temperature (El-Nino 3) time series.Wavelet power spectrum- The white dotted line is the cone of influence indicating the region of time 

and frequency where the results are not influenced by the edges of the data and are therefore reliable. The solid black line corresponds to 

the 95% confidence interval and the areas within this black solid line indicate significant variability at the corresponding periods and 

times. (A) Andhra Pradesh annual rainfall and El-nino 3. (B) Karnataka annual rainfall and El-nino 3. (C) Tamil Nadu annual rainfall 

and El-nino 3.  Cross-wavelet coherence (correlation) and the wavelet spectrum is shown with power increasing from blue to red colours 

(scale is from zero to one with maximum correlation as one and no correlation as zero).  X-axis: time in years from the start of the time 

series (1949), Y-axis: periodicity, years. The wavelet spectrum is shown with power increasing from blue to red colours. 
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Figure 5.8: Correlation (Cross-wavelet coherence) between dominant frequencies in the South-West monsoon rainfall time series & 

annual sea surface temperature (El-Nino 3) time series. Wavelet power spectrum- The white dotted line is the cone of influence indicating 

the region of time and frequency where the results are not influenced by the edges of the data and are therefore reliable. The solid black 

line corresponds to the 95% confidence interval and the areas within this black solid line indicate significant variability at the 

corresponding periods and times. (A) Andhra Pradesh South-West monsoon rainfall and El-nino 3. (B) Karnataka South-West monsoon 

rainfall and El-nino 3. (C) Tamil Nadu South-West monsoon rainfall and El-nino 3.  Cross-wavelet coherence (correlation) and the wavelet 

spectrum is shown with power increasing from blue to red colours (scale is from zero to one with maximum correlation as one and no 

correlation as zero). X-axis: time in years from the start of the time series (1949), Y-axis: periodicity, years.  The wavelet spectrum is 

shown with power increasing from blue to red colours. 
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Figure 5.9: Correlation (Cross-wavelet coherence) between dominant intra-annual frequencies in the North-East monsoon rainfall time 

series & annual sea surface temperature (El-Nino 3) time series.Wavelet power spectrum- The white dotted line is the cone of influence 

indicating the region of time and frequency where the results are not influenced by the edges of the data and are therefore reliable. The 

solid black line corresponds to the 95% confidence interval and the areas within this black solid line indicate significant variability at the 

corresponding periods and times. (A) Andhra Pradesh North-East monsoon rainfall and El-nino 3. (B) Karnataka North-East monsoon 

rainfall and El-nino 3. (C) Tamil Nadu North-East monsoon rainfall and El-nino 3.  Cross-wavelet coherence (correlation) and the wavelet 

spectrum is shown with power increasing from blue to red colours (scale is from zero to one with maximum correlation as one and no 

correlation as zero). X-axis: time in years, Y-axis: period. The wavelet spectrum is shown with power increasing from blue to red colours. 
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5.4 Discussion 

 

The results of the space-time South India model indicate that the 

combination of a high maximum temperature and low rainfall in the year 

preceding an outbreak and a low maximum temperature and high rainfall 

in the year itself resulted in more outbreaks over the study period.  The 

former conditions (high temperature and low rainfall in the preceding year) 

can alter the breeding sites of larvae.  Drought seems to be important in the 

epidemiology of EHDV (Epizootic Haemorrhagic Disease Virus) (Dubay 

et al., 2004). 

The positive and significant association of the non-descript sheep and 

exotic and crossbred breed of sheep with BTV outbreaks is consistent with 

the findings of the spatial analysis of bluetongue outbreaks in Andhra 

Pradesh and Karnataka (Chapter 4).  Although similar land cover classes 

(post-flooding or irrigated croplands and rain fed croplands) as in the 

spatial analysis were also selected within the individual category of models 

in the present analyses, they were not selected in the combined best model, 

and none was significant in the final model.  Therefore although land cover 

and host types were important in determining average BTV severity across 

years at the district level they do not seem to be important in determining 

the inter-annual variability of BTV outbreaks between districts.  However, 

use of dynamic host and land cover variables (especially the rain fed and 

irrigated croplands) is required to rule out their role in describing inter-

annual variability. 
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Instead models using just climate data outperformed host and land cover 

models in the individual category of models and also in the final model, in 

which host variables were also included.  Thus, climate appears to play a 

dominant role in the inter-annual variability of BTV outbreaks in each 

district and substantiates the findings of the time series analyses at the state 

level (Chapter 3).  

The variance explained by the individual category models without adding 

any spatial and temporal random effects is no greater than 20%.  The 

variance explained by a climate model for BTV in Israel was also around 

20% (Purse, Baylis, et al., 2004).  The low variance explained in the present 

case may also be due to high, variable levels of immunity to the numerous 

(>20) circulating serotypes of BTV.  

The best model with spatial and temporal structure (Fig. 5.4) predicts 

bluetongue outbreaks, albeit often at a very low level, in all districts of all 

three states in 2008 and 2009 (the ‘out of fit’ years), whereas the disease 

was actually recorded from only relatively few districts of Karnataka in 

those years.  The correlation between observed and predicted outbreaks is 

better in 2008 (r2= 0.35) than in 2009 (r2=-0.03).  Thus, whilst the 

introduced temporal structure (with an AR(1) component) could in theory 

have accounted for some of the effects of the possible high levels of 

immunity suggested in the previous paragraph, it appears that it was not 

doing so in the present instance.  Either the effect is not there (i.e. immunity 

is not important) or it is much more complicated than is imagined in a 

relatively simple analysis (perhaps due to the interaction between multiple 

co-circulating serotypes of BTV, or due to vector numbers varying between 



172 
 

years independently of host immune status, as suggested in the time series 

analysis chapter). 

Wavelet coherence analysis (correlation) between El-Nino 3 and different 

annual and seasonal rainfall variables from different states resulted in 

strong correlation for about half the total recording period between North-

East monsoon rainfall and sea surface temperature for all three states for 

periodicities of about three to six years (Fig. 5.9).  There was significant 

correlation of the El-Nino-3 index with North-East monsoon rainfall in 

Tamil Nadu (r2=0.44, p < 0.005), South interior Karnataka region (r2=0.50, 

p < 0.005) and a non-significant correlation for coastal Andhra Pradesh 

(Zubair & Ropelewski, 2006).  Significant periodicities of between two and 

seven years were also found in the El-Nino data but these, too, are transient, 

and occur only in the second half of the recorded period (Fig. 5.6A and 

Hales et al., 1999; Kovats, 2000).  The timing of the North-East monsoon 

rainfall (Oct-Dec) coincides with the major proportion of the BTV 

outbreaks in Tamil Nadu but outbreaks start in the month of August and 

decline from October onwards in Andhra Pradesh as shown in the monthly 

time series analysis (Chapter 3).  However, Karnataka is influenced by both 

South-West and North-East monsoon and therefore the outbreaks are 

observed in both the seasons but in different geographical regions of the 

state.  Establishing links between El Nino and local rainfall (Fig. 5.9), 

however, brings us no nearer to solving the problem of BTV outbreaks and 

can only eventually contribute to a DEWS if and when the link between 

BTV and rainfall is formally established.   
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Inter-annual variability in climate influenced by El-Nino may affect the 

socio-economic conditions of the farmers dependent on monsoon for 

fodder.  Drought conditions are also believed to increase midge-wildlife 

(Zebra; reservoir host) contact rates and thus further increase BTV 

transmission (Baylis et al., 1999b).  The chance of contact with wild-life 

reservoir hosts (deer and other wild ruminants) is higher the more mobile 

are the sheep populations.  Such sheep movement is more common in 

drought years, due to the scarcity of fodder.  Drought  also promotes  long 

distance migration of sheep farmers  to distant places, which might lead to 

a higher risk of contact with wild ruminants (some species of deer) which 

are sub-clinically infected reservoirs of bluetongue in Europe (Garcia-

Saenz et al., 2014; Ruiz-Fons et al., 2008).  Drought conditions will also 

increase contact rates between midges and livestock due to congregation of 

animals near limited water resources. 

Incorporating spatial and temporal structure and the type -1 interaction 

resulted in a better model than the model without any random effects (Table 

5.1).  There are many examples of Bayesian disease mapping accounting 

for spatial and temporal heterogeneity.  In most of the examples a CAR 

prior was used to account for spatial structure, but  the  temporal prior was 

more like a random walk  (Knorr-Held & Besag, 1998) or using regression 

B-splines (MacNab et al., 2004).  Neglecting the spatial structure or 

temporal structure can lead to selection of variables which may not be 

important (Hoeting et al., 2006), and also to loss of predictive power 

(Wikle, 2002).  Accounting for spatial and temporal structure also accounts 

for omitted predictor variables having spatial or temporal structure.  
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Likewise, accounting for interaction (type-1 in our study) is important to 

prevent bias in estimation of parameters (Blangiardo et al., 2013). 

The best combined model (including both climate and host significant 

variables as well as spatial and temporal structured and unstructured 

random events) increased these r-squared values to up to 99% on the 

training data (model with type-1 interaction).  Unfortunately, however, 

these high predictive accuracies were not shown with the ‘out-of-fit’ data 

for 2008 and 2009, where explained variances fell to 35% and only 3% 

respectively.  Model fit to the training set data appears in this case to be a 

very poor indicator of out of fit predictive performance.  The reasons for 

this urgently need to be investigated but, until we have answers to some of 

the questions raised here, the likelihood of an accurate DEWS for BTV in 

India seems very low. 
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Chapter 6 

Village level spatial analysis of 

bluetongue cases using Bayesian 

Network modelling and Bayesian 

model based geostatistics 
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6.1 Introduction  

 

Bluetongue outbreaks have been recorded since 2004 in more than 25,000 

(26,613) villages in Andhra Pradesh.  In addition to the occurrence of 

outbreaks in villages, the numbers of animals affected and the numbers 

dying of bluetongue are also recorded.  Models and analyses are required 

to help us to understand the role of different risk factors in determining the 

severity of BTV cases at village level.  There is a great deal of geographical 

variability in bluetongue cases in Andhra Pradesh and not all villages are 

equally affected by the disease.  Host and land cover predictors were shown 

to be important in discriminating between less and more severely affected 

districts in the spatial analysis of Chapter 4.  Establishing the relationships 

between bluetongue cases and climate, host, and land cover variables at the 

village level should refine this understanding at a finer spatial scale. 

Quantifying the role of different predictors in governing spatial variability 

in disease severity between villages is important in control and 

management of bluetongue.  There are more than eighty thousand villages 

in South India and more than 50,000 of them have sheep.  Currently there 

is no vaccination programme to control bluetongue, but pentavalent 

vaccine technology developed under the All India Network Programme 

(AINP) has recently been transferred to commercial vaccine manufacturers 

that will enable large scale production of a vaccine.  Currently vaccination 

for other infectious diseases in South India is carried out by field 

veterinarians in rural villages (Heffernan et al., 2011) and all the villages 

are covered by vaccinating against major diseases.  Vaccination is not 
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targeted in any way (e.g. to villages historically at higher risk than others).  

Given the huge number of villages and limited veterinary personnel to cater 

for the needs of livestock farmers, fine scale village level risk maps would 

be very useful for estimating the approximate number of vaccination doses 

required, and for targeting vaccination and resources to high risk areas.  

The present chapter focuses on identifying important variables in 

determining the severity of bluetongue cases and to develop a predictive 

model by accounting for spatial autocorrelation with two broad objectives: 

1) To identify variables directly associated with bluetongue cases using 

Bayesian Network Model (BNM) analysis.   

2) To use the variables identified in the BNM analysis to make predictions 

in unsampled villages using a Bayesian geostatistical model. 

6.1.1Variable selection methods 

 

In analyses of epidemiological data and risk factor identification a 

multitude of potential predictor variables must be reduced to a subset that 

is most strongly associated with the outbreak data.  Analyses are usually 

correlative rather than causal but it is hoped that within the subset of 

predictor variables causal factors (or their proxies) are represented.  It is the 

job of future research to confirm causal relationships suggested by 

correlation analyses.  In reducing a large set of potential predictors to the 

smaller, useful subset, numerous variable selection procedures are 

available to the researcher, including significant p-values (Greenland, 

1989), step-wise forward or backward procedures (Babyak, 2004), 

information criterion (AIC, AICc and BIC) (Burnham & Anderson, 2004), 
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LASSO methods (Tibshirani, 1997), least angle or penalized regression 

(Hesterberg et al., 2008), and all subsets approaches (Furnival & Wilson, 

1974).  Different variable selection methods with their advantages and 

disadvantages are discussed by (Miller, 2002).  Recently, a review of the 

use of different variable selection methods in epidemiology found that 28% 

of the papers used prior knowledge to select variables, 20% used step wise 

selection procedures and a further 15% used changes in an accuracy metric 

(such as AIC or BIC) (Walter & Tiemeier, 2009).  However, 35% of the 

publications did not describe the method in detail; variables were selected 

without any explanation for their choice (Walter & Tiemeier, 2009). 

A common problem encountered in epidemiological analyses is that of 

correlation between predictor variables (in spatial or temporal domains).  

To remove obvious correlations such as these the predictor data may be 

first pre-processed using ordination techniques such as Principal 

Components Analysis (PCA) (Shapiro et al., 2005; Wade et al., 2008).  

Problems remain, however, of correlations between raw or pre-processed 

data of related types (for example, day and night-time Land Surface 

Temperature).  These problems may be resolved by submitting the entire 

predictor data set to PCA, but the biological interpretation of each PC axis 

then becomes extremely difficult. 

6.1.2 Bayesian Network Modelling 

 

 Considering the problem of multicollinearity and disadvantages of the 

other variable selection methods discussed above, BNM offers potential in 

identifying the important variables and their relationships.  There is often 
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some relationship or dependency between the sorts of predictor variables 

used in epidemiological studies and between some or all of these and the 

response variable, the number of cases.  Whilst relationships may be 

nothing more than correlation (a and b are correlated; both might depend 

upon a hidden factor, c), dependencies imply causation (a causes b, but b 

does not cause a).  Statistical analysis of epidemiological data rarely 

separates correlates from causes and it is left to the researcher, post-hoc, to 

make this distinction based on his/her experience, or further observations, 

interventions or experiments.  Recently, Bayesian Network Modelling 

(BNM) has been employed to analyse multivariate data, to select only those 

variables that are in some way linked to each other and, in some cases, to 

identify potential causal pathways within the network (Lewis & Ward, 

2013).  BNM can be carried out in a number of ways; certain parts of the 

network can be defined in advance (when dependencies are known a priori) 

or BNM algorithms can suggest the most likely links between all the 

variables (both predictors and predicted) in the dataset (the more common 

scenario for epidemiological datasets).  BNM proceeds by making each 

input variable a node and then seeks the links between the nodes on the 

basis of multi-variate Bayesian regression and GLM (Lewis and Ward 

2013).  The analysis determines the likelihood of each possible link in the 

network and the output is a graphical representation of the most likely links 

(arcs) given that particular dataset.  Variables in the input dataset that are 

not linked to any other variables in the final network are omitted from the 

network diagram, and the strength and direction of the links in the network 

indicate the association between the nodes.  Each node may have 1 to n 
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parents (i.e. contributing directly to the node) and may connect to any 

number of offspring (child) nodes.  It is tempting to think of parent nodes 

as implying causation between parent and offspring but this interpretation 

is only correct when the dataset is complete (i.e. when it contains all 

possible contributory variables).  When it is not (which is usually the case 

with epidemiological datasets) causation cannot be certain because a 

hidden (i.e. unmeasured or unrecorded) variable may be determining both 

the parent and child nodes which may otherwise be conditionally 

independent of each other.  Heckerman gives a salutary example of this 

effect (Heckerman, 1998).  The number of parents for each variable to be 

tried is n-1 (n being the number of variables) but it can be restricted to fewer 

than that depending on the aims of the analyses and the computational 

resources available.  In one example in the literature, the marginal 

likelihood did not improve beyond a five parent limit in a set of thirteen 

variables (Wilson et al., 2013).  

Finally it should be stressed that there is no single ‘dependent’ variable in 

a BNM analysis (e.g. case numbers of a disease).  All variables are treated 

equally, and the resulting network shows the links between them all.  It is 

possible to exclude certain links within BNM (for example some nodes can 

be specified as having no parents, or others no child nodes) based on a 

priori knowledge about certain relationships.   

Bayesian Network analysis has to date been applied in many fields such as 

neuroscience, bioinformatics, ecology and recently in epidemiological data 

analysis, to identify risk factors for child diarrhoea in Pakistan (Lewis & 

McCormick, 2012) and to explore associations between climate, farm 
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management and the presence of tick species (Ornithodorus. Erraticus) on 

pig farms (Wilson et al., 2013).  In this study (tick presence on pig farms), 

it was found that farm management practices were directly associated with 

the presence of ticks (four successive surveys over twelve year period) but 

that climate (temperature and precipitation) was not.  In another study the 

association of weather with the occurrence of ten major diseases of pigs 

was studied (McCormick et al., 2013).  Three pathologies were directly 

associated with temperature variables and all ten pathologies were related 

to at least two other pathologies each. 

Intrinsic Spatial autocorrelation (SAC) can also be a problem with fine 

scale georeferenced point data, but conventional regression techniques such 

as linear models or generalized linear models employed in analysing 

infectious disease data fail to account for SAC.  Fitting complex 

geostatistical structures within the BNM framework is computationally 

complex and time consuming, due to fitting of all possible networks (2n 

combinations with single parent limit, where n is the number of variables).  

Due to the robustness of BNM to identify the direct and indirect association 

between environmental variables and the advantage of fitting all possible 

combinations of networks, the present study applied BNM as an 

exploratory tool to identify the relationships between bluetongue cases, 

climate, land cover and host conditions in the village level Andhra Pradesh 

dataset (objective 1).  Selected sets of important variables identified by the 

BNM were then used later in a Bayesian geostatistical regression model for 

making predictions of bluetongue cases in other areas (objective 2).   
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6.1.3 Bayesian geostatistical model 

 

Geostatistical techniques are commonly applied to point- or polygon-

referenced data in veterinary epidemiological studies (Biggeri et al., 2006).  

The different parameters of the semi-variogram model usually employed 

are shown in Fig. 6.1.  The semi-variogram graph shows the spatial 

autocorrelation of the measured sample points.   The distance at which the 

graph levels out is known as the range and thus the sample locations within 

the range are spatially autocorrelated.   The y-axis value at which the semi-

variogram graph attains the range is known as the sill.  The nugget is the 

semi-variance at distance zero and is usually attributed to micro-scale 

variation, or measurement error.  The choice of different semivariogram 

models (linear, exponential, spherical, Matern) is usually based on the fit 

to the semi variance (classical geostatistics) or the model likelihood (Diggle 

et al., 1998) to the observations.   The latter is referred to as model-based 

geostatistics (Diggle et al., 2003) which can handle non-normal data.  

Bayesian geostatistical modelling is advantageous for complex hierarchical 

specification in the data and assigning prior distributions for parameters.  
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Figure 6.1: Semi-variogram showing different parameters; Nugget, range and sill 

Problems with big datasets 

Computing the spatial covariance matrix in geostatistics can be very 

difficult and time consuming as the number of observations (N) increases 

(Lasinio et al., 2013).  Many methods have been proposed to estimate 

spatial covariance when N is large (Sun et al., 2012).  Estimation using 

maximum likelihood approaches can be modified for a large number of 

observations by partitioning the data into clusters (Vecchia, 1988).  These 

clusters are assumed to be conditionally independent and the likelihood is 

approximated.  This method (Vecchia, 1988) was adapted using restricted 

maximum likelihood (Stein et al., 2004).  In another method, the spatial 

process was represented using spectral processes (Fuentes, 2007) and 

approximating the likelihood.  None of these methods is suited to non-

stationary covariance situations (Banerjee & Fuentes, 2012). 

Recent methods to solve problems with big datasets include approximation 

of the Gaussian field (GF) with a Gaussian Markov Random Field (GMRF) 
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(Rue & Held, 2005).  This approximation of GF by GMRF makes the 

matrix sparse.  There are computationally feasible algorithms for sparse 

matrices which can be used in the estimation of parameters, and recently 

(Rue et al., 2009) proposed the INLA (Integrated Nested Laplace 

Approximation) algorithm as an alternative to MCMC.  Until recently it 

was not possible to fit geostatistical correlation structures with the INLA 

approach, but this was overcome by using  an SPDE (Stochastic Partial 

Differential Equation) approximation of the GF by the GMRF (Lindgren et 

al., 2011).  The stochastic partial differential equation creates links between 

Gaussian fields and Gaussian Markov random fields for faster estimation 

of spatial covariance.  The SPDE approximation of the GF with GMRF is 

promising but requires pre-processing of the data to create a triangulation 

matrix (Lasinio et al., 2013).  

In the methods discussed so far inference was either drawn based on 

maximum likelihood and their modifications or using INLA for Bayesian 

inference.  Although Bayesian geostatistical models are advantageous over 

maximum likelihood based methods, computation of the spatial correlation 

structure using MCMC becomes complicated as the number of 

observations increases.  MCMC computes inverses of the N*p by N*p (N 

is the number of observations and p the number of variables) covariance 

matrix for every iteration and is therefore computationally time consuming 

when hundreds and thousands of iterations are required.  It may not be 

possible to run such calculations on personal computers.  The magnitude of 

the problem increases as N increases.  
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Problems of computing the spatial covariance matrix of big datasets were 

overcome by using a class of models known as low-rank or reduced rank 

models (Banerjee et al., 2008) using a sub-sampling approach.  The main 

assumption in the low-ranked approach or sub-sampling is that the spatial 

correlation structure at the observed sites can be summarized on a sub-

sample, which is representative of the whole set of observations.  The 

representative sets of locations are referred to as “knots”. (Kriegel et al., 

2011).  There are different methods for creating knots for sub-sampling.  

One-way of selecting knots is by use of different clustering algorithms like 

connectivity-based clustering (also known as hierarchical clustering) or 

centroid-based clustering.  In connectivity-based clustering, points 

(locations of disease cases) are more related geographically to nearby 

points than the points which are far away.  Different distance metrics like 

Euclidean distance, Manhattan distance, or maximum distance can be used 

depending on the type of data and study undertaken.  The knots based 

approach is known as predictive process modelling (Banerjee & Fuentes, 

2012) and computing covariance functions at the knots also addresses the 

issue of non-stationarity (directional trend).  Non-stationarity in this study 

can arise due to distinct farm level practices in different villages, which 

may influence bluetongue transmission, and also due to movement of 

animals in different directions. 

In this study the spBayes package (Finley et al., 2007) was used as it is 

designed for complex models and handles large spatial datasets within a 

Bayesian framework and can accommodate non-Gaussian dependent 

variables.  The covariates (directly related ones only) selected in the 
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Bayesian Network Modelling were used in this analysis to quantify their 

role in governing the severity of bluetongue cases in the villages of Andhra 

Pradesh and test the model accuracy on ‘out-of-fit’ data.   

6.2 Materials and methods 

6.2.1 Bluetongue case data for Andhra Pradesh 

 

The case data for bluetongue between 2004 and 2011 at village level were 

obtained from the department of Animal Husbandry, Andhra Pradesh, 

India.  The department collates the number of monthly cases and deaths 

due to bluetongue from their wide network of field veterinarians and 

regional disease diagnostic laboratories.  The bluetongue case data were 

summarised as the maximum number of cases per month occurring in a 

particular village from 2004-2011.  The maximum number of cases was 

selected instead of other measures of summarising the data, in order to 

understand the role of different predictor variables in driving severity 

(maximum cases) in each village.  

6.2.2 Climatic predictors 

Monthly Rainfall Estimates (RFE) were obtained from the NOAA/Climate 

Prediction centre RFE 2.0. (Xie et al., 2002) as seven-year averaged values 

(2004-2010) available at 8 x 8 km spatial resolution.  These were processed 

to calculate the average annual totals of South-West rainfall (June-Sept), 

North-East rainfall (Oct-Dec) and annual rainfall (Jan-Dec). The annual 

mean temperature layer between the years 1950-2000 was downloaded 

from Worldclim (Hijmans et al., 2005), available at 0.86x0.86km spatial 

resolution.  The village level shape files for Andhra Pradesh were obtained 

under an individual license issued by the Survey of India and these were 
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used to extract village centroids.  The village level shape files (polygons) 

were used to extract rainfall variables and annual mean temperatures at the 

village level using the zonal statistics function in Arc Map 10.1 (ESRI, Inc., 

Redlands, CA, U.S.A.). 

 6.2.3 Land cover and topographical predictors 

 

Digital elevation data were obtained from NASA’s Shuttle Radar 

Topography Mission (SRTM) at ~90m resolution (Reuter et al., 2007).  

Aspect and slope were calculated at 90m resolution and averaged across 

the polygon for each village in Arc Map 10.1. 

The areas of each village covered by different proportions of eight land-

cover classes were extracted from the GlobCover land-cover map available 

at 300m resolution (Defourny et al., 2006) using the zonal statistics 

function in Arc Map 10.1 (ESRI, Inc., Redlands, CA,U.S.A.).  

6.2.4 Livestock census data 

 

Livestock censuses are carried out every five years and the 18th livestock 

census data (2007) were used in this study (http://www.dahd.nic.in/, 

accessed on 5th May 2014).  Household surveys are conducted at village 

level involving a huge number of personnel for enumeration, supervision 

and compilation of the data at the all-India level.  Densities of host species 

and individual sheep breeds, namely numbers of non-descript sheep, 

Deccani sheep, crossbred & exotic sheep, indigenous cattle and buffaloes, 

were extracted from the database of National Livestock census data and 

log-transformed to normalise the data.  All the variables (except bluetongue 

http://www.dahd.nic.in/
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cases with a Poisson distribution) were assumed to follow a normal 

distribution in a BNM analysis (Table 6.1).  The variables can be allowed 

to follow other distributions and there is no pre-requisite in BNM analysis 

to follow certain distributions only.  These host variables were selected 

based on a preliminary district level spatial analysis. 

6.2.5 Bayesian network modelling  

 

Bayesian network modelling is an extension of Bayesian graphical models 

routinely used in Bayesian analysis.  In the single Bayesian graphical 

model, the structure of the graph and their dependencies are decided a 

priori and then the parameters are estimated.  In BNM, however, the main 

objective is to derive a structure or graph which describes the relationships 

and interdependencies between variables.  The difference lies in defining 

dependent and independent variables, which is pre-determined in the 

Bayesian graphical model, but is not specified in the BNM.  The BNM 

algorithm searches the best graph among the different possible structures, 

based on the network score (log marginal likelihood) (Congdon, 2007).   

The difference between a single Bayesian graphical model and BNM can 

be explained by using village level case data as an example.  In a single 

Bayesian graphical model, the number of bluetongue cases can be 

considered as the dependent variable and the 20 environmental variables as 

independent (predictor) variables.  The relationship between the dependent 

variable (e.g. cases) and the independent variables (e.g. environmental 

predictors) can be quantified using a Bayesian generalised linear model 

with Poisson errors.  The probability function for Y is given by: 
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   (1) 

Where 0  is the intercept and 1 to n  are the coefficients for the fixed 

effects of the predictors ix1 to nix ) in each place (village) i. and i is the 

unstructured spatial effect in each village, modelled using an exchangeable 

prior i ~ Normal (0, var).  

Equation 1 can be depicted by a graphical model 

 

 

 

 

 

 

 

 

Figure 6.2: Depiction of a Bayesian Graphical model (DAG).The arrow indicates 

dependency and different parameters of the model are shown. The probability 

distribution of the dependent variable (Y (i)) is shown in a rectangle (dependent 

variable) and all the other parameters are shown in ellipses. 

 

The above graph is referred to as a Directed Acyclic Graph (DAG) in 

Bayesian modelling.  The cycle in the graph should not loop back, hence 

its ‘acyclic’ description (for example Y is dependent on   but not vice-

versa).  This (DAG) terminology is commonly used in computer science 

and mathematics. 
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BNM is quite different from the Bayesian graphical model in that neither 

its structure nor its dependencies are decided a priori.  Instead, the structure 

(DAG) is identified by fitting different relationships between different 

combinations of variables and examining which structure best describes the 

available data.  None of the variables is considered as dependent or 

independent, but the best DAG identifies the links between the variables.  

As emphasised in the introduction to this Chapter, however, dependencies 

(implying causation) can only be inferred from a BNM when the input 

variable data set includes all possible contributory variables and omits no 

important (hidden) ones. 

 The BNM was fitted to the Andhra Pradesh dataset using the abn package 

in R.  An uninformative structural prior was used, meaning that all the 

structures have equal chances of being selected in the final DAG, and 

uninformative Gaussian priors with mean zero and variance 1000 were 

assumed for the parameters defining relationships between all the variables.  

Within the BNM each node in turn is considered a dependent variable (as 

in GLM/GLMM) and all other nodes as potential independent variables.  A 

globally optimal DAG is then identified by a process of structure discovery 

or structure learning.  There are different methods for identifying the best 

DAG depending on the number of variables present in the analysis.  The 

exact search method based on a goodness of fit criterion i.e. the highest log 

marginal likelihood score (network score), was used in this study (Koivisto 

& Sood, 2004).  The best DAG was identified by fitting 2n models, where 

n is the number of variables (in this case  220= 1048576 models were fitted 
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with each parent limit).  Model complexity increases as the number of 

parents is increased. 

Banning certain relationships 

Certain relationships can be banned from selection based on a priori 

knowledge about their association.  In this study, climate and land cover 

variables could influence host variables but the reverse relationships were 

banned from being selected in the network. This DAG was compared with 

the DAG obtained without any restrictions based on the network score, and 

the better of these two models (i.e. the one with the highest log likelihood 

score) was further used for bootstrapping. 

Parametric bootstrapping 

The best DAG identified in the exact search method can be considered as 

the final DAG, but there is always a chance of over fitting as with any other 

variable selection method (Babyak, 2004).  This chance, however, is 

considered small for BNM, especially with the very large sample size 

available in the present study (more than 15,000 villages).  Nevertheless, 

parametric bootstrapping was conducted to check overfitting and to delete 

arcs which are not important.  Parametric bootstrapping was used to prune 

the arcs identified in the exact search method.  This is a computationally 

intensive task that required cluster computing for its rapid implementation.  

In parametric bootstrapping, simulation is performed many times (50 or 

more times) to generate datasets (artificial) of similar size to the original 

(i.e. observed) dataset.  Simulation to generate bootstrap datasets is 

performed by providing marginal posterior densities (initial values) for 
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each and every parameter in the best DAG identified in the previous step.  

Simulation can be performed in any of the MCMC software; WinBugs or 

Just Another Gibbs Sampler, JAGS.  The latter was used in the present 

study.  The simulated bootstrapped datasets were again subjected to best 

DAG selection as described earlier.  The main objective of bootstrapping 

is to check the percentage of arcs retained in >50% of the bootstrapped 

datasets (Friedman et. al 1999).  

In JAGS, as mentioned above, we need to provide the structure of the 

dependencies, and the marginal posterior distribution of each parameter for 

simulating datasets, but actual data are not provided as we are using MCMC 

to simulate datasets for bootstrapping and perform BNM on the 

bootstrapped datasets.  The number of MCMC iterations and thinning is 

decided based on the correlation between samples (autocorrelation plots) 

and it should give similar number of samples as in the original dataset (~ 

16800 in this case). 300,000 iterations were performed with a 132,000 burn 

in and the actual MCMC is then run for 168,000 iterations with a thin of 

10, which gives 16800 observations, the same sample size as the original 

data.  Once the bootstrap datasets are generated, the exact search for 

identifying the best DAG performed on the original dataset needs to be 

repeated on all the bootstrapped datasets.  The final step is to compare the 

number of times a particular arc is selected in bootstrap datasets which have 

been represented in 50% (or more) of the DAGs.  This structure represents 

the relationship between variables and their dependencies (both direct and 

indirect).  The Markov blanket is defined as that set of variables that is ether 

a parent or child of a particular variable under study.  Here the variable of 
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interest is the number of BTV cases so its Markov blanket includes only 

the parent and child nodes directly linked to it in the BNM and it was only 

these variables that were later used in modelling to estimate regression co-

efficients or to make predictions in a GLM/GLMM framework.  The BNM 

itself is not designed for making spatial predictions or extrapolating the 

results to other areas. 

6.2.6 Bayesian geostatistical modelling approach  

 

Relationships between bluetongue cases at the village level and 

environmental predictors (selected in BNM) were quantified using a 

Bayesian generalised linear mixed modelling approach with Poisson errors 

and by employing a geostatistical correlation structure to account for spatial 

autocorrelation.   Suppose we have i=1,….n number of villages.  Village 

locations (i) are spatially geo-referenced as S= {s1, …., sN}; BTV spreads 

locally, leading to spatial autocorrelation of disease cases; and 

environmental variables that may be contributing to BTV severity are 

independently spatially auto correlated as well.  Hence bluetongue cases 

are dependent not only on   predictor variables, but also on the weighted 

spatial neighbours.  Therefore it is assumed that village-based BTV case 

numbers, Y(si), follow a Poisson distribution and that these case numbers 

are related to environmental variables (x), spatial processes (w), and village 

level independent spatial errors ( ) as shown in equation 2 below: 

          

          



194 
 

 iancenugget var ),(~

(range)parameter n correlatio ),(~

 variance),(~

 efficients-co regression -),(~

parametersdifferent for  Priors

(nugget) processt independen),0(~)(

parameter smoothness anddecay  spatial

,
exp);,(

);,(),(

process spatial )),(,0(~)(

)()(......   )log(

(2)                                                      )()y/(YPr 

2

2

2

21

21

21
2

21

21

22110i































feIG

dcU

baIG

N

 Ns

SS
SS

SSSSC

SSCGPsw

sswxxx

Poisson

i

i

iininii

i
























The residual variance consists of a spatial process )( isw  and an 

independent process )( is  . The independent process is modelled using the 

observed nugget variance as the prior.  The spatial process or spatial 

random effects accounts for the spatial dependence caused by intrinsic 

processes such as disease spread or by unmeasured or unobserved 

covariates.  The spatial process will not account for missing covariates 

which do not have spatial structure and this additional variance is accounted 

for by the independent process.  The spatial process is specified by a zero 

mean Gaussian process and covariance function ),( 21 SSC .  The correlation 

function );,( 21  SS  varies with the correlation structure (Gaussian, 

Spherical, Exponential) specified and   denotes the spatial decay and 

smoothness parameter.  An exponential model was fitted to the present 

dataset with covariates.  Prior distributions for the parameters are defined 
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to complete the hierarchical structure of the model.  The regression co-

efficients    are assigned multivariate Gaussian priors. The variance 

component of the independent process (nugget) 2  and variance of the 

spatial effect 2  are assigned inverse-Gamma priors.  The correlation 

parameter (spatial decay and smoothness)   are assigned a uniform prior 

distribution.  The range of this uniform prior is decided based on the 

residual semi-variogram to cover a broad range of spatial autocorrelation.  

Equation (1) will be very difficult to implement when n is large and so a 

predictive process was employed  to reduce the n by placing knots on the 

observations (location of BTV records) using two clustering algorithms (k-

means and k-medoids)  and equation (1) can be rewritten with only a subset 

of n being used.  All the assumptions and priors remain the same. 

Let n* be the number of knots with n*<<n, and w*= (w(s*1)….w (s*n)) 

The projected spatial process w(s) at locations s, based on the knots can be 

given by a “kriging equation” w~ (s) = E {w(s) |w*},  

Where w*= (w(s*1), w(s*2),…w(s*n)) 

 W~(s) is known as the predictive process derived from the parent spatial 

process w(s) 

Equation 2 can be re-written with the predictive process model 
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The predictive process model (Equation 3) also accounts for non-

stationarity (trend) in the data. 

Model building 

Bluetongue case data from Andhra Pradesh were divided into training and 

test data, 75% and 25% respectively.  The relationships between the 

maximum number of bluetongue cases and the independent variables were 

quantified using a non-spatial Bayesian regression model.  Semivariogram 

models were fitted on the residuals to check for spatial autocorrelation and 

to assess the best correlation structure to be specified in the Bayesian spatial 

model.  The selection of a semi-variogram model can also be done in a 

Bayesian framework, but it can be computationally expensive to try all the 

correlation structures, particularly given a large sample size.  The range and 

sill of the semi-variogram was used to decide the prior distribution for . 

The next step was to create “knots” to reduce the number of observations 

(location of villages in Andhra Pradesh) for estimating the spatial 

correlation parameter.  Two knot selection procedures were employed with 

knots at 64, 128, 256 and 512 knots.  The approximate number of villages 

in each cluster with knots at 64, 128, 256 and 512 were 193, 96, 48, and 24 

respectively.  Models with two clustering algorithms and four different 

knots resulted in fitting of 8 models and the best knot model was selected 

based on reduced DIC (Spiegelhalter et al., 2002).   

The best knot model (Bayesian spatial model with covariates) was used to 

make predictions on hold out test data and the predictions were compared 

with the observed bluetongue cases in Andhra Pradesh. The model 
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predictions were compared with the observed bluetongue cases using Root 

Mean Square Errors (RMSE).  

                                 Bayesian Network Models                                                   Bayesian geostatistical models 

                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Flow chart explaining steps for Bayesian Network Modelling and 

Bayesian geostatistical method. 

 

6.3 Results 

6.3.1 Bayesian Network Modelling results 

 

The best model was 

subjected to Parametric 

bootstrapping using JAGS 

and final DAG identified 

Repeating the above step for 

each parent limit.  Six parent 

limits were attempted.  

BNM model fitted to 

all the 20 variables 

with restrictions. 

All the models (with and 

without restrictions) were 

compared and the model 

with highest log 

likelihood was selected 

BNM models were fitted 

to all the 20 variables 

without restrictions. 

Variables identified in the BNM 

models were used in fitting 

Bayesian geostatistical model 

Knots placement at 64, 128, 256 and 

512 using two different knot 

procedures (k-means and medoid)   

Fitting of Bayesian geostatistical 

models (eight) and selection of best 

model based on reduced DIC 

Predictions on ‘out-fit-data’ using 

best model 

Within a single Bayesian 

geostatistical  model 

semivariograms are fitted at each 

knot. Finally average 

semivariogram model results are 

produced.  The broad range priors 

specified will account for local 

small scale spatial dependence. 
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Out of more than 25000 villages in Andhra Pradesh, 16511 villages had 

sheep populations but only 524 villages ever reported BTV outbreaks 

during the study period (2004-2011).  The maximum number of bluetongue 

cases (1800) over the study period was observed in Naguluppala padu 

village in the Prakasam district of Andhra Pradesh.  Bluetongue outbreaks 

(Figure 6.7A) occur more in areas (South and North-West region) of high 

sheep population (Fig. 6.7B). 

There are more indigenous cattle in Southern and Northern villages and 

fewer in some Central villages (Fig. 6.7A).  Non-descript sheep populations 

are higher in some Southern areas and lower in the some central and North-

Eastern part of Andhra Pradesh (Fig. 6.7B).  

Central and North-Eastern villages are more irrigated (post-flooding or 

irrigated croplands) than other villages (Fig. 6.7C).  There are more rain 

fed croplands in North-Eastern villages than elsewhere (Fig. 6.7D).  The 

annual mean temperature is higher in Northern and Central villages of 

Andhra Pradesh and lower in Western and North-Eastern villages (Fig. 

6.7E) which form part of the Western and Eastern Ghats respectively.  

These Ghats (both Eastern and Western) receive higher rainfall and are 

covered by more forest compared to other parts.  The Northern, Eastern and 

coastal parts of Andhra Pradesh receive more South-West monsoon rainfall 

compared with the central and Southern parts (Fig. 6.7F). 

The log marginal likelihood (marginal score) of BNM models when fitted 

by increasing the parent limit is shown in Table 6.2.  The complexity 

increases as the parent limit increases and the BNM model with a six-parent 
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limit is, perhaps unsurprisingly, best.  Therefore, further analysis was 

restricted to a six-parent DAG without restrictions.  The DAG with 

restrictions performed poorly compared to the unrestricted DAG with six 

parents, five parents, or four parents. 

The six-parent unrestricted DAG is shown in Fig. 6.4 and after 

bootstrapping in Fig. 6.5.  The best DAG after bootstrapping (Fig. 6.5)  lost 

only two arcs of the original DAG without bootstrapping;   the association 

of exotic & cross bred sheep with the Deccani breed  and  of terrain aspect 

with the land cover class ‘closed needle-leaved evergreen forest’.  The 

bootstrapped DAG also lost the node of ‘exotic and crossbred sheep’ which 

was not associated with any of the other variables in the DAG.  The 

importance and impacts of the links in the final DAG after bootstrapping 

are shown by their coefficients (Tables 6.3, 6.4, 6.5 & 6.6).  The 

coefficients of a single DAG are given in different tables for each node.  

Each node representing a variable is equivalent to a single GLM model 

consisting of a dependent (parent) variable and independent variables (child 

nodes).  Therefore each node should be interpreted with their respective 

parent nodes and their relationships with child nodes.  The co-efficients of 

the DAG (with six parent limit and after bootstrapping) are split into 

different categories (BTV cases, host nodes, land cover nodes and climate 

nodes) (Tables 6.3, 6.4, 6.5 & 6.6). 
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Unrestricted DAG model results (Tables 6.3, 6.4, 6.5 & 6.6) 

Impacts of climate, land use and hosts on bluetongue cases in Andhra 

Pradesh 

Bluetongue cases increase with increases in annual mean temperature, 

densities of indigenous cattle and non-descript sheep and coverage of post-

flooding or irrigated croplands, but decrease with increases in South-West 

monsoon rainfall, and coverage of rain fed croplands (Fig. 6.5). 

How does climate constrain land use in Andhra Pradesh? 

Rain-fed croplands, post-flooding or irrigated croplands, and closed 

broadleaved deciduous forest all increase in areas of high annual rainfall.  

However, relationships between rainfall and land use are more subtle and 

depend on monsoon season.  Post-flooding or irrigated croplands are found 

in areas of high North East monsoon rainfall but low South West monsoon 

rainfall whilst rain fed croplands are found in areas with low South-West 

monsoon rainfall (Fig. 6.5). 

How does climate and land use constrain host densities in Andhra 

Pradesh? 

Non-descript sheep densities tend to be higher in areas of rain fed 

croplands, areas with high South West monsoon rainfall and lower in areas 

of closed broad leaved deciduous forest or areas with steep slopes.  They 

are also highly positively correlated with buffalo densities.  

Indigenous cattle densities also increase with the coverage of rain fed 

croplands and some forest types (closed to open broadleaved evergreen 
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and/or semi-deciduous forest,  closed needle leaved evergreen forest), but 

decrease on terrain with increasing gradients (slopes). 

Densities of Deccani sheep decrease with increases in areas of closed 

broadleaved deciduous forest and in areas of increasing slope, whereas they 

are positively associated with Indigenous cattle and buffalo densities, rain 

fed croplands and South West monsoon rainfall.  Non-descript sheep 

populations’ increase with increases in buffalo population, rain fed 

croplands and South West monsoon rainfall and decrease with increases in 

Deccani sheep, closed broadleaved deciduous forest and terrain slope. 

Rain fed croplands support high densities of buffalo and are positively 

associated with mosaic vegetation and slope.  Post-flooding or irrigated 

cropland also supports high densities of buffalo and is positively associated 

with rain fed croplands, mosaic vegetation, close to open type of forest, 

closed forest and slope.  Mosaic cropland supports high densities of 

indigenous cattle and is positively associated with rain fed croplands, post-

flooding or irrigated croplands and mosaic vegetation, whereas it is 

negatively associated with closed to open forest (VALUE_40 in Table 6.1)  

and North-East monsoon rainfall. 

Indigenous cattle and Buffalo densities increase with increases in 

temperature.  Deccani sheep and non-descript sheep, however, both 

decrease with increases in temperature.  Temperature is positively 

associated with slope and negatively associated with South West monsoon 

rainfall.  North East monsoon rainfall supports high densities of indigenous 

cattle, but does not support buffalo, Deccani sheep or non-descript sheep.  
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Increases in South-West monsoon rainfall are associated with increases of 

indigenous cattle populations and decreases of closed broadleaved 

deciduous forest and terrain slope.  Annual rainfall is negatively associated 

with buffalo, rain fed croplands and post-flooding or irrigated cropland and 

negatively associated with mosaic vegetation. 

Relationships among the land cover variables and climate 

Mosaic vegetation is positively associated with closed type of forest and 

negatively associated with closed to open type of forest.  Closed to open 

broadleaved and/or semi-deciduous forest is positively associated with 

closed type of forest.  Closed needle leaved evergreen forest is positively 

associated with mosaic vegetation, closed to open the type of forest, closed 

broadleaved deciduous forest and mosaic forest.  Aspect is positively 

associated with slope, whereas it is negatively associated with temperature. 

6.3.2 Restricted DAG model results (Fig 6.6) 

 

The unrestricted DAG identified some of the relationships which may not 

be plausible. The spurious relationships identified include climate variables 

(temperature and rainfall) dependent on the host (sheep, buffalo and cattle) 

and land cover (irrigated and rain fed croplands) influenced by densities of 

buffalo.  The spurious relationships were not identified in the DAG (Fig. 

6.6) when certain arcs were banned by assuming certain restrictions like the 

host influencing climate, land cover or aspect and slope.  

The variables directly associated with bluetongue cases in the restricted 

DAG model were slightly different from the variables identified in the 
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unrestricted DAG.  The annual mean temperature, densities of indigenous 

cattle, South-West monsoon rainfall, post-flooding or irrigated croplands 

were also identified in the restricted DAG (Fig. 6.6).  The mosaic cropland 

and closed broad deciduous forest was identified in the restricted model. 

6.3.3 Spatial regression (Bayesian geostatistical) model results 

 

The residuals of the non-spatial model relating BTV outbreaks indicate the 

presence of spatial autocorrelation (Fig.6.9).  The minimum distance 

between two village centroids was 130 metres and the maximum was 888 

km.  Observed village locations and the locations of 256 knots placed by 

two different methods are shown in Fig. 6.8.  

Comparison of DIC using the k-means clustering algorithm shows that the 

model with 128 knots is the most parsimonious model with lowest DIC 

(Table 6.7).  The best model in the k-mediod based clustering is the one 

with 256 knots.  Comparison of the two results shows that the model with 

256 knots and medoid based clustering is better than other models.  

Bluetongue cases are significantly positively associated with annual mean 

temperature, indigenous cattle numbers, non-descript sheep numbers and 

post-flooding or irrigated croplands and significantly negatively associated 

with rain fed croplands and South-West monsoon rainfall.  The 

relationships and the signs of the co-efficients are similar to the final 

bootstrapped DAG (Fig. 6.5), but the magnitude of each effect changes 

considerably in the spatial regression model with incorporation of spatial 

autocorrelation (Table 6.8).  The spatial decay parameter   is estimated as 

175 km (95% credible interval; 31km-434km).   
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Comparing the fit of the model (Fig 6.11) shows that predictions coincide 

quite well spatially with observations but overall the model predicted more 

cases than were observed, and the overall correlation between observed and 

predicted outbreaks is poor (r=0.21).  The Root Mean Square (RMSE) 

statistics for the model on training and test data are given in Table 6.9.   
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Variable name Description Variable 

type 

BT_cases  Bluetongue affected maximum number of 

cases 

Poisson 

Ind_Cattle Indigenous cattle  Gaussian 

Buffalo Buffalo  Gaussian 

Exotic & cross_sheep Exotic and crossbred sheep Gaussian 

Deccani Deccani breed of sheep Gaussian 

ND_sheep Non-descript sheep Gaussian 

VALUE_11 Post-flooding or irrigated croplands Gaussian 

VALUE_14 Rain fed croplands Gaussian 

VALUE_20 Mosaic cropland (50-70%)/vegetation 

(grassland, shrub land, and forest) (20-50%) 

Gaussian 

VALUE_30 Mosaic vegetation (grassland, shrub land, 

forest) (50-70%)/cropland (20-50%) 

Gaussian 

VALUE_40 Closed to open (>15%) broadleaved evergreen 

and/or semi deciduous forest (>5m) 

Gaussian 

VALUE_50 Closed (>40%) broadleaved deciduous forest 

(>5m) 

Gaussian 

VALUE_70 Closed (>40%) needle leaved evergreen forest 

(>5m) 

Gaussian 

VALUE_110 Mosaic forest/shrub land (50-70%)/ grassland 

(20-50%) 

Gaussian 

Temperature  Annual mean temperature Gaussian 

Aspect Aspect Gaussian 

Slope Slope Gaussian 

Annual_rain Annual monsoon rainfall Gaussian 

NE_rain North east monsoon rainfall Gaussian 

SW_rain South west monsoon rainfall Gaussian 

Table 6.1: Variables used in the Bayesian network analysis. The variable labels 

used in the DAGs (Figures 6.4, 6.5 and 6.6) are shown in the first column.  
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Parent limit Log marginal 

likelihood (network 

score) 

Six parents limit with no restrictions -507752 

Five parents limit with no restrictions -508210 

Four  parents limit with no restrictions -509382 

Banned arcs with six parents limit (with 

restrictions) 

-510128 

Three parents limit with no restrictions -511414 

Two parents limit with no restrictions -513923 

One parent limit with no restrictions -519605 

Table 6.2: Log marginal likelihood (network score) of DAG’s with different 

parent limits and with banned relationships. The higher the network score, the 

better the model. 
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Figure 6.4: The final DAG with a six parent limit (unrestricted).Normally 

distributed variables are shown in ellipses and Poisson-distributed bluetongue 

cases are shown in a box.  The information flows from parent to child and the 

direction of the arrows shows the dependency of the variables with other 

variables.  The blue arrows towards BT_cases show positive associations and red 

arrows show negative associations.  The filled ellipses (grey color) show the 

variables which are directly related to bluetongue cases. See Table 1 for the full 

names of the variables. 
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Figure 6.5: The final DAG with six parent limit (unrestricted) after bootstrapping 

(>50% retained in the bootstrapping).Normally distributed variables are shown 

in ellipses and Poisson-distributed bluetongue cases are shown in a box.  The 

information flows from parent to child and the direction of the arrow shows the 

dependency of the variable with particular variable.  The blue arrows towards 

BT_cases show positive association and red arrows show negative association. 

The filled ellipses (grey color) show the variables which are directly related to 

bluetongue cases.  The exotic and crossbred sheep variable is not related to any 

of the variables in this DAG.  See Table 1 for the full names of the variables. 
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Figure 6.6: The DAG (restricted or banned model) with six parent limit. Normally 

distributed variables are shown in ellipses and Poisson-distributed bluetongue 

cases are shown in a box.  The information flows from parent to child and the 

direction of the arrow shows the dependency of the variable with particular 

variable.  The blue arrows towards BT_cases show positive association and red 

arrows show negative association. The filled ellipses (grey color) show the 

variables which are directly related to bluetongue cases.  See Table 1 for the full 

names of the variables.  
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Bluetongue cases Credible interval 

Indigenous Cattle 0.393, 0.414 

Nondescript Sheep 0.268, 0.287 

VALUE_11 0.261, 0.270 

VALUE_14 -0.203, -0.185 

Temperature 1.342, 1.430 

South west monsoon rainfall -0.418, -0.400 
Table 6.3: Credible intervals of variables associated with the bluetongue node in 

Figure 5 (with a 6 parent limit and unrestricted DAG).Co-efficients in blue 

indicate a positive association and in red a negative association with bluetongue 

cases.  All the relationships identified in the final DAG are significant because 

the credible intervals do not bridge zero. 

Host Nodes Credible interval (95%) 

Indigenous Cattle  

VALUE_14 0.153, 0.175 

VALUE_40 -0.074, -0.052 

VALUE_70 -0.079, -0.058 

Slope -0.058, -0.038 

(Buffalo No parent nodes) 

(Exotic and crossbred  sheep No parent or child 

nodes) 

Deccani sheep  

Indigenous cattle 0.042, 0.062 

Buffalo 0.065, 0.085 

VALUE_14 0.057, 0.080 

VALUE_50 -0.070, -0.048 

Slope -0.334, -0.312 

South west monsoon rainfall 0.215, 0.238 

Non-descript sheep  

Buffalo 0.107, 0.125 

Deccani breed of sheep -0.361, -0.342 

VALUE_14 0.214, 0.235 

VALUE_50 -0.119, -0.098 

Slope -0.186, -0.165 

South west monsoon rainfall 0.384, 0.404 
Table 6.4: Credible intervals of variables associated with host nodes (in bold) 

identified in the best DAG with a six parent limit (unrestricted).The co-efficients 

depicted in blue indicate a positive association and in red a negative association.  

All the relationships identified in the final DAG are significant because the 

credible intervals do not bridge zero. 
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land cover Nodes Credible interval 

(95%) 

Value_11  

Buffalo 0.250, 0.268 

VALUE_30 0.276, 0.295 

Slope 0.074, 0.093 

Value_14  

Buffalo 0.148, 0.166 

VALUE_11 0.143, 0.162 

VALUE_30 0.182, 0.203 

VALUE_40 0.138, 0.163 

VALUE_50 0.211, 0.239 

Slope 0.067, 0.085 

VALUE_20  

Indigenous cattle 0.045, 0.055 

VALUE_11 0.108, 0.119 

VALUE_30 0.876, 0.889 

VALUE_40 -0.051, -0.040 

VALUE_70 -0.100, -0.088 

North East monsoon rainfall -0.027, -0.017 

 

VALUE_30  

VALUE_40 -0.331, -0.305 

VALUE_50 0.671, 0.697 

VALUE_40  

VALUE_50 0.719, 0.733 

(VALUE_50 No parent nodes) 

VALUE_70  

VALUE_30 0.497, 0.516 

VALUE_40 0.092, 0.117 

VALUE_50 0.102, 0.129 

VALUE_110 0.064, 0.080 
Table 6.5: Credible intervals of variables associated with land cover nodes (in 

bold) identified in the best DAG with a six parent limit (unrestricted model).The 

co-efficients depicted in blue indicate a positive association and in red a negative 

association. 
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Climate Nodes Credible interval (95%) 

Temperature  

Indigenous cattle 0.019, 0.032 

Buffalo 0.163, 0.175 

Deccani sheep -0.053, -0.039 

Nondescript Sheep -0.052, -0.039 

Slope 0.803, 0.818 

South west monsoon rainfall -0.0636, -0.048 

Aspect  

VALUE_70 0.022, 0.039 

Temperature -0.092, -0.065 

Slope 0.631, 0.657 

(Slope No parent nodes) 

Annual monsoon rainfall  

VALUE_11 0.110, 0.131 

VALUE_14 0.165, 0.188 

VALUE_20 0.107, 0.145 

VALUE_30 -0.137, -0.098 

VALUE_50 0.071, 0.094 

North east monsoon rainfall  

Indigenous Cattle 0.125, 0.144 

Buffalo -0.114, -0.094 

Deccani sheep -0.164, -0.144 

Nondescript Sheep -0.293, -0.273 

VALUE_14 -0.094, -0.074 

Temperature 0.169, 0.189 

South west monsoon rainfall  

Indigenous Cattle 0.241, 0.258 

Buffalo -0.095, -0.077 

VALUE_11 -0.103, -0.085 

VALUE_14 -0.137, -0.117 

VALUE_50 0.113, 0.132 

Slope 0.470, 0.487 
Table 6.6: Credible intervals of variables associated with the terrain or climate 

nodes (in bold) identified in the best DAG with a six parent limit. The co-efficients 

depicted in blue indicate a positive association and in red a negative association.  

All the relationships identified in the final DAG are significant because the 

credible intervals do not bridge zero. 
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Figure 6.7: Distribution of different independent variables in Andhra Pradesh (AP) used in the analysis (A) logged (natural logarithm) 

Indigenous cattle (B)logged (natural logarithm)  non-descript sheep population (C) area covered by post-flooding or irrigated croplands 

(D) area covered by rain fed croplands (E) Annual mean temperature (0C) and (F) South-West monsoon rainfall (mm).

A B 
C 

D E F 



214 
 

 

 

  

Figure 6.8: (A) Observed maximum bluetongue cases (natural logarithm) and (B) 

Total sheep population (natural logarithm) in Andhra Pradesh. 
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Figure 6.9: Semivariogram on the residuals of the non-spatial model.  Dots 

indicates the empirical semi-variogram.  The x-axis is distance in km and y-axis 

indicates the semi-variance. 
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Figure 6.10:  Plot of the locations of centroids used to cluster the villages of AP 

for measurement of semi-variance and spatial structure.  The black dots show all 

the villages of Andhra Pradesh.  The k medoid knots (n = 256) are shown as red 

dots.  In medoid clustering the knot must be located at one of the actual 

observations. (Co-ordinate reference system: WGS 1984) 
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Model 64 knots 128 knots 256 knots 512 knots 

Centroid based 

clustering 

51229.18 

 

28254.33 

 

29764.1 

 

49760.18 

 

Medoid based 

clustering 

36860.21 

 

38960.13 

 

17653.33 

 

50096.57 

 

Table 6.7: DIC of different models fitted using two clustering methods to 

generate 4 different knots in the observations. In medoid clustering the knot must 

be located at one of the actual observations. 

Variable Mean Credible 

interval 

Intercept -7.891 -10.04, -6.67 

Indigenous cattle 1.290 0.10,  1.41 

Non-descript 

sheep 

6.272 0.05,  7.36 

Post-flooding or 

irrigated 

croplands 

1.020 0.89 , 1.10 

Rainfed 

croplands 

-6.462 -7.13, -4.70 

Mean 

temperature 

3.136 0.027,  3.89 

South-West 

Monsoon rainfall 

-1.906 -0.002, -1.54 

Sigma square 7.983 1.22,  4.74 

Phi 1.583 (175km) 0.28,  3.91 (31-

434 km) 

Table 6.8: Mean coefficients and their credible intervals of the Bayesian spatial 

regression model (Equation 1) with 256 knots using the k-medoids based 

algorithm. 
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Variance  of training 

data  

RMSE (training 

data) 

Variance  of test 

data  

RMSE (test data) 

285.69 16.61 326.36 18.87 

Table 6.9:  Root mean square error (RMSE) statistics for the training and test 

data for the Bayesian spatial regression model with 256-knots-k-medoids. 

 

 

Figure 6.11:  Observed (A) and fitted (B) bluetongue outbreaks using Bayesian 

spatial regression model (Equation 1) with 256 knots using the k-medoids based 

algorithm. 
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6.4 Discussion  

 

The BNM identified associations of bluetongue with indigenous cattle, 

non-descript sheep, post-flooding or irrigated croplands and temperature 

(all positively associated) and rain fed croplands and South-West monsoon 

rainfall (both negatively associated) with bluetongue cases.  These results 

cannot be directly compared with the variables identified in chapter 4 

because the spatial scale is different and also the measure of bluetongue 

(mean number of BTV outbreaks in chapter 4 and maximum number of 

BTV cases in this chapter).  The problem by aggregation of data and 

varying results at different spatial scales is referred to as the Modifiable 

Area Unit Problem (MAU) (Lawson, 2013). 

Positive association of bluetongue cases with indigenous cattle can be 

attributed to the mixed farming system practiced in Andhra Pradesh by 

small and marginal farmers.  Indigenous cattle are maintained for draft 

purpose and have low milk yields (Rao et al., 2010).  The buffalo 

population increased after the green revolution in India, but still it is less 

than the cattle population.  Every ten-fold increase in Indigenous cattle (i.e. 

a unit increase on the log. scale to which the data were transformed) 

increases the maximum BTV outbreaks by 1.29.  The role of non-descript 

sheep is more important; for every ten-fold increase in these livestock, the 

maximum BTV outbreaks increased by more than 6.27 (Table 6.8). 

Selection of post-flooding or irrigated croplands is supported by the fact 

that Andhra Pradesh contributes 13% of the rice produced in India 

(Adusumilli & Laxmi, 2011) and rice cultivation is dependent on irrigation 
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systems.  The larvae of the midges C.oxystoma and C.arakawae along with 

larvae of six other Culicoides species were found in active in abandoned 

rice fields (Yanase et al., 2013).   

Temperature not only speeds up the extrinsic incubation period (EIP) but 

also has a significant effect on development and mortality of the potential 

vectors (Gubbins et al., 2008).  

In the present BNM analysis buffalo numbers were not directly linked to 

BTV case numbers, but only indirectly related.  Instead buffalo appear in a 

separate network that includes Deccani sheep, non-descript sheep, rain fed 

croplands,  post-flooding or irrigated croplands and temperature (all 

positively associated)  and the North-East monsoon rainfall and South-

West monsoon rainfall (both negatively associated). 

Annual rainfall, North-East monsoon rainfall, Deccani sheep and mosaic 

cropland were indirectly associated with bluetongue.  Annual rainfall is 

directly related to post-flooding or irrigated croplands and rain fed 

croplands and this relationship was as expected.  This relationship might 

not have been detected with other methods due to multicollinearity. 

Multicollinearity may not only be due to two variables related to each other, 

but also due to linear combinations of more than two predictor variables 

correlated with other variables (Dohoo et al., 1997) leading to unstable 

regression co-efficients and inflated estimates of standard errors.  The 

BNM approach accounts for this multicollinearity by joint modelling of all 

the variables and identifying relationships which are determining 

bluetongue cases and also their inter-relationships (Fig. 6.5).  
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Similarly North-East monsoon rainfall is directly associated with 

temperature.  The positive relationship of North-East monsoon rainfall with 

temperature is significant as the coastal regions and Southern Andhra 

Pradesh receive most of the North-East monsoon rainfall and these are also 

regions with high temperatures.  Deccani sheep numbers are correlated with 

South-West monsoon rainfall, indigenous cattle and rain fed croplands.  As 

expected the temperature and slope were directly related to each other.  

Climate variables were also found to be co-dependent in studying the 

association of weather factors with different pig pathologies (McCormick 

et al., 2013). 

As expected, most of the land cover variables were related with each other 

each other and annual rainfall is directly associated with five of the eight 

land cover variables.  

The problem of multicollinearity can be accounted for by exploratory 

correlation analysis and excluding highly correlated variables, but the 

criteria (level of correlation co-efficient) for selecting or deleting a variable 

is arbitrary (Dohoo et al., 1997).  Multicollinearity will be a problem when 

the correlation co-efficient between two variables is >0.9, but it can also 

cause problems at lower levels depending on the variables under study.  The 

level of correlation is difficult to identify when there is linear correlation of 

the predictor variables with other variables and this association can be 

identified in the Bayesian network modelling. 
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Spatial regression analysis discussion 

The aim of the Bayesian spatial regression was to quantify the role of 

different predictor variables (identified in the BNM approach) on 

bluetongue cases in Andhra Pradesh and to check whether the inclusion of  

spatial autocorrelation  changes the direction and significance of the 

variables related to BTV cases  and involved different methods to handle 

the large spatial dataset.  The Bayesian hierarchical model with spatial 

structure in the random effects allowed for accurate estimation of the 

parameters and their associated uncertainty. 

Comparison of predictive process models with varying number of knots 

resulted in a better model with 128 knots in k-means method of clustering 

to group the observation for better estimation of correlation structure than 

128 knots-k-medoid, but medoids based clustering method to generate 256 

knots  outperformed the  256 knot- k-means  method.  The medoid based 

clustering method is considered to be superior over k-means (Banerjee & 

Fuentes, 2012) because the knots are constrained to be from the observed 

locations.  

The spatial predictive process based models (knots) will perform poorly 

when there is fine scale spatial range is less than the range specified in the 

knots (Finley et al., 2009) and closer knots are required to capture the small-

scale spatial dependence.   However, in this study the spatial range was 

approximately 175km (Table 6.8), so the knots based models can capture 

the spatial dependence in the data within the 95% credible interval of the 

spatial range (31-434 km).  The range of spatial autocorrelation estimated in 
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the spatial regression model can be due to some missing covariates or due 

to movement of animals (migration), which is very common practice in 

Andhra Pradesh.  In a recent study on different aspects of sheep farming in 

Andhra Pradesh (Rao et al., 2013) found that the minimum and maximum 

distance migrated by sheep flocks was 51 km and 199 km respectively.   

The significance of the variables and their associations (positive and 

negative) does not change when the BNM and spatial regression model 

results are compared, but the magnitude of the co-efficients do change.  

These changes are expected because the spatial regression model also 

accounts for spatial autocorrelation using the knots approach.  Overall, the 

BNM identified important variables associated with bluetongue cases in 

Andhra Pradesh.  The BNM also identified inter-dependencies between 

other variables (host, climate and land cover) which can be misleading 

sometimes and should be interpreted based on the biological understanding 

of the system.  The possibility of including all the variables (hidden) is rare 

in any study and therefore can lead to false dependencies.  The advantage 

of BNM in restricting certain relationships (if known a priori) is helpful in 

identifying the true dependencies.  In this study, an attempt was made to 

include as many variables (climate, host, land cover) as possible to identify 

the true dependencies at a very high resolution (village level) for whole of 

Andhra Pradesh with a huge sample size.  The spurious relationships 

identified in the present study (host influencing climate or land cover) may 

be due to non-inclusion of certain hidden variables (for example human 

population at village level).   The use of Bayesian geostatistical model 

resulted in a poor fit to the observed bluetongue cases and needs further 
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improvement.  However, the spatial methods described in this chapter can 

be used in combination with BNM to account for spatial autocorrelation (if 

any) and also to make predictions.     
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Chapter 7 

Discussion and Conclusions 
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7.1 Introduction  

 

Analyses of bluetongue outbreaks and cases using statistical models were 

conducted in this study to understand the risk factors determining the extent 

and severity of the disease and to develop predictive models at different 

spatial and temporal scales.  Past studies on the epidemiology of bluetongue 

in India have modelled only the presence and absence of bluetongue at 

district level, using a spatial logistic regression techniques and without 

reporting the important risk factors.  With a view to develop predictive 

models to help control this economically important disease, the thesis 

explores bluetongue epidemiology in South India in novel ways with the 

following broad research questions in mind: 

 

1. Is the epidemiological system for bluetongue in South India the same 

in the various states, or is there any evidence for different systems in 

different areas? 

2. What is the role of abiotic extrinsic factors (climate) in determining 

seasonal variability of BTV outbreaks? 

3. Is there any evidence that biotic intrinsic factors (host, breeds) are 

important in determining the occurrence and severity of bluetongue 

outbreaks in South India? 

4. How can a very large number of potential predictor variables be 

reduced to a manageable number before building models of BTV 

transmission in India? 
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5. Can bluetongue be adequately forecast (with low RMSE and high 

correlation between observed and predicted BTV) at different spatial 

and temporal scales? 

7.2 Different epidemiological systems in South India 

 

Bluetongue is endemic in South India with outbreaks occurring every year.  

It was not known to the researchers whether the epidemiology of 

bluetongue is different in each state or the same.  Considering the diverse 

habitat requirements for potential vectors of bluetongue and the different 

serotypes reported from each state, there is a possibility of different 

epidemiological systems in each state.  The NLDA approach (Chapter-2) 

resulted in selection of  a model  (high sensitivity and specificity) with 

different presence and absence groups (three in each group) and this can be 

attributed to the different sets of environmental conditions prevailing in 

South India.  Similarly, spatial analysis of BTV outbreaks using individual 

state models at district level identified different variables in each state 

(Chapter 4).  The presence of different breeds in each state a subset of which 

were selected alongside different land cover and climate variables in state-

specific spatial models further suggests the existence of different 

epidemiological systems in South India.  This is significant for future vector 

or virus surveillance (high risk areas) in different zones and ultimately for 

designing control strategies (vaccination or vector control).  Therefore, 

future studies in the rest of India should focus on different agro-ecological 

zones to understand the reasons for the absence of clinical disease in the 

presence of sero-positivity. 
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7.3 Intrinsic and extrinsic factors in determining bluetongue 

variability 

7.3.1 Intrinsic and extrinsic factors determining temporal variability of 

BTV outbreaks at state and district level 

 

Teasing apart the role of intrinsic and extrinsic factors is not 

straightforward but can be undertaken using statistical models and other 

methods (wavelet analysis).  Poisson models are the most commonly 

employed statistical methods for analysing count data in infectious disease 

epidemiology (Hii et al., 2009; Hii, Rocklöv, et al., 2012; Hii, Zhu, et al., 

2012).  Over-dispersion in count data can arise due to many factors.  One 

of the main reasons is the presence of monthly variability in the number of 

outbreaks and this can be accounted for by using autoregressive errors or 

using Quasi Poisson methods (Hii et al., 2009).  The use of AR (1) models 

using Bayesian methods can account both for overdispersion in the data and 

for missing variables with temporal structure.  The missing variables with 

temporal structure can be due to the waxing and waning of immunity or to 

any other factors with temporal structure (e.g. unmeasured seasonal 

variables) as discussed in Chapter 3.  Therefore, detection of significant and 

dominant autocorrelation in the Poisson model can be due to intrinsic 

factors (like herd immunity) or extrinsic factors (like seasonal climate 

variables).   In the time series analysis of bluetongue outbreaks the addition 

of the AR(1)  term in the Poisson model resulted in considerable reduction 

in DIC compared to the model with only meteorological variables.  

Although the autoregressive process is dominant (lower DIC than model 

with meteorological variables only) in the temporal variation of bluetongue 
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outbreaks, addition of meteorological variables (extrinsic process) 

marginally improved the overall fit of the model.  Future studies should 

include immunity data and/or serotype information and other seasonal 

variables for disentangling the role of intrinsic and extrinsic factors.  The 

inclusion of harmonics of particular periodicity (six months, one year, two 

years and three years) mimicking the influence of immunity can be tested 

to rule out the role of intrinsic mechanisms (herd immunity) in determining 

the seasonality and inter-annual variability in BTV outbreaks.  In the 

preliminary analysis (results not shown) to evaluate the relative role of 

monthly meteorological conditions versus  harmonic cycles of lengths 12, 

24, 36, and 48 months, only the 12 month cycle, but none of the longer 

cycles, was significant.   

Only annual periodicity in the bluetongue outbreaks and rainfall series 

could be detected in the data.  It is therefore expected that the extent of 

seasonal BTV outbreaks will in part be determined and/or limited by host 

immunity which will therefore tend to reduce the strength of the 

correlations between climate variables and BTV outbreaks.  Therefore, the 

role of intrinsic and extrinsic factors is important in the temporal variability 

of BTV outbreaks in Andhra Pradesh.    

Inter-annual variability in the BTV outbreaks in Andhra Pradesh can be due 

to long term changes in climate as shown by the presence of significant 

around two year periodicity (wavelet coherence analysis with rainfall).  The 

absence of significant periodicities of more than one year in BTV outbreaks 

(and in the rainfall data) data and detection of sub-three year correlation 



230 
 

with rainfall series clearly shows the importance of climate in determining 

inter-annual variability.   

Although the cross-wavelet analysis (matching amplitudes of two time 

series) were not significant, wavelet coherence analysis revealed significant 

correlation at periodicities more than one year (chapters 3 and chapter 5).  

The wavelet coherence analysis (phase synchrony concept) is often 

advocated (Cazelles, et al., 2007, Hurtado et al 2014) to establish correlation 

between non-stationary time series’.  The two signals are said to be phase 

synchronized if their respective phases lock together.  The amplitude 

(cross-wavelet) of the two signals may not necessarily be synchronized or 

correlated with each other.   Using the phase synchrony concept (wavelet 

coherence analysis) (Rosenblum et al., 1996; Pikovsky et al., 1997, 2001) 

it is possible to detect weak correlations between non-stationary time series.  

Therefore, the wavelet coherence results presented in this analysis are not 

surprising considering the non-stationary pattern in the rainfall time series 

(Fig. 5.6 in Chapter5).   

The majority of temporal analyses of vector-borne diseases focus on 

developing forecasting models and quantifying the role of environmental 

variables.  There are very few studies which have analysed time series data 

to tease apart the role of intrinsic and extrinsic factors in driving the 

outbreaks or cases (Koelle & Pascual, 2004; Koelle et al., 2005; Stenseth 

et al., 2006).  The use of popular ARIMA models is more focussed on 

forecasting and not used to understand intrinsic mechanisms (Promprou et 

al., 2006).   GLM models are also employed in many studies, but ignore the 

temporal correlation effect in the dependent variable.  The use of GLMM 
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is gaining more importance to account for temporal autocorrelation, but 

these models have not been used to disentangle the role of intrinsic and 

extrinsic factors in a Bayesian framework.    Recently wavelet methods 

(Cazelles et al., 2005; Grenfell et al., 2001) have been used to understand 

the periodicity in the dependent variable and also to identify correlation 

(wavelet coherence spectra) between two non-stationary time series.   

Although Bayesian GLMM models offer flexibility in  specifying priors 

and in borrowing information from the points which are nearest in time, 

and the incorporation of AR(1)  can also account for missing covariates 

(covariates which have not been included in the analysis) with temporal 

structure, such models are less often applied in analysing infectious disease 

data.  Bayesian GLMM models applied to outbreak data (Chapter 3) can 

account for uncertainty in the parameter values and can be very useful in 

making forecasting models.   

7.3.2 Role of Intrinsic and extrinsic factors in spatial variability of BTV 

outbreaks 

 

Spatial variation in BTV outbreaks can be due to either intrinsic and 

extrinsic factors or both.  Spatial analysis using a Poisson model with 

spatial autocorrelation (BYM approach) and covariates outperformed the 

models with only covariates (chapter 4).  Spatial autocorrelation as 

discussed in chapter 4 can be due to spread of disease through movement 

of infected vectors or host animals or due to missing covariates with spatial 

structure and both can be grouped in the extrinsic factor category.  The 

spatial variability in BTV outbreaks at district level can be due to innate 

resistance or susceptibility (intrinsic factors) to BTV outbreaks as discussed 
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in chapter 1.   Outperformance of models with host variables (breed type 

and abundance) demonstrates the role of intrinsic factors in comparison to 

land cover and climate (extrinsic factors).   The individual category of 

models without spatial autocorrelation performed worse than the models 

with spatial autocorrelation.  Overall, the intrinsic factors dominate over 

the extrinsic factors in determining the spatial variability of BTV outbreaks. 

Spatial analysis is very common in non-infectious disease mapping and it 

is gaining importance in infectious disease epidemiology.  The potential of 

Bayesian GLMM models to account for spatial autocorrelation and the 

identification of risk factors via the all subset approach in INLA has not yet 

been fully realised.  A pentavalent vaccination campaign has recently been 

launched, currently targeted only at sheep.  The risk factors identified in the 

present spatial analyses include other hosts (buffalo and cattle) and these 

should also be covered by the vaccination programme and in sero-

surveillance.  In many BTV affected countries, the vaccination is practiced 

in both cattle and sheep (Caporale, & Giovannini, 2010), but there are no 

reports of vaccination in buffalo. 

7.3.3 Space-time methods to understand intrinsic and extrinsic factors 

 

District level annual outbreaks of BTV analysed using Bayesian Poisson 

regression model by accounting for extra-Poisson variability was helpful in 

teasing apart the relative role of intrinsic and extrinsic factors.  The direct 

influence of sea surface temperature on the bluetongue outbreaks is difficult 

to establish using wavelet analysis tools due to the relatively short time 

series of BTV data, however the longer time series of both rainfall (52 
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years) and sea surface temperature was helpful in establishing the strong 

correlation between North-East monsoon rainfall and sea surface 

temperature for all the three states.  The importance of rainfall in 

determining the severity of BTV outbreaks was established in both the state 

level time series model (Chapter 4) and of both rainfall and temperature in 

district level space-time analysis (Chapter 5).   
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Figure 7.1: Influence of different intrinsic and extrinsic factors on bluetongue 

outbreaks in South India across different spatial and temporal scales. Boxes with 

dotted lines indicate extrinsic factors and boxes with solid line indicate intrinsic 

factors. 
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7.4 Variable selection 

 

Variable selection in analyses of epidemiological data is critical.  In this 

study, different variable selection methods were employed in different 

chapters depending on the objectives of the analyses and also the 

computational feasibility to understand the epidemiology of BTV and 

develop predictive models.  Step-wise variable selection was employed in 

NLDA (Chapter 2) as the aim of the analysis was to identify variables 

which discriminate between presence and absence groups.  

In the time series analysis, MCMC based simulation was performed and a 

long time (e.g. around 45 minutes) was required to run multiple chains with 

large numbers of iterations (200,000) for a single model.  Therefore, stage 

wise selection of models (entering monthly variables in different stages) 

using temperature and rainfall variables was performed and the consistency 

of selected variables was compared when the order of the stages was varied.  

Nevertheless, the objective of this analysis was to quantify the role of 

intrinsic and extrinsic factors in determining the seasonality and inter-

annual variability of BTV in Andhra Pradesh and identifying significant 

lags of rainfall and temperature, so a limited number of models were 

considered.   

In the district level spatial analyses of BTV outbreaks, a modified all 

subsets approach was followed (chapter 4).  The modified all subsets 

approach was possible due to computational efficiency of INLA and there 

was no bias in selection of variables due to accounting for spatial 

autocorrelation.  Variable selection that ignores spatial autocorrelation can 
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result in the selection of unimportant variables (Hoeting et al., 2006) and 

also bias in the estimates of the co-efficients as discussed in chapter 4.  The 

all subsets approach in a Bayesian framework has not so far been applied 

to bluetongue or any other vector borne disease.   

Village level analysis of bluetongue cases to identify risk factors and 

develop predictive model has not previously been conducted for bluetongue 

or any other animal vector borne disease in India.  Bayesian Network 

Modelling (BNM) was employed in a village level analysis of bluetongue 

cases, using a total of 21 variables, to identify their direct and indirect 

relationships (chapter 6).  Only those variables that were directly linked to 

the BTV cases were considered in the subsequent village level models.   

7.5 Predictions at different spatial and temporal scales to help in 

controlling BTV in South India 

7.5.1 Global early warning systems for livestock diseases 

 

Early warning systems for animal diseases are often based on collection of 

data (formal and informal), analysis and the creation of alerts usually based 

on cumulative case numbers, often seasonally adjusted.   Although the 

alerts are generated in real time, there is no prediction of outbreaks in 

unknown areas, or quantification of the risk factors involved in disease 

transmission.  The alerts are disseminated through fax, e-mail, bulletins to 

the member countries.  GLEWS (Global Early Warning System) (FAO), is 

a joint initiative of OIE, WHO and FAO for early warning of important 

livestock diseases and zoonotic diseases.  EMPRES (Emergency 

preparation system) for Tran’s boundary Animal and Plant Pests and 

Diseases (Welte & Terán, 2004) was developed by FAO and mainly 
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focuses on Rinderpest, Contagious Bovine Pleuropneumonia (CBPP), 

FMD (Foot and Mouth Disease), PPR (Peste des Petits Ruminants), Rift 

valley fever, Newcastle disease, lumpy skin disease and African swine 

fever.  Bluetongue is not included in the list.   The EMPRES early warning 

system is based on reports and the information is disseminated to member 

countries.  There is an early warning system for RVF in Africa (Anyamba 

et al., 2009) and the system is used by EMPRES for enhanced surveillance 

activities (of humans and animals).  However, the early warning system 

relies on positive anomalies of NDVI and rainfall to develop risk maps and 

does not involve any predictive modelling methods.  Thus, neither GLEWS 

nor EMPRES focuses on predictive models or the identification of risk 

factors.   

7.5.2 NADRES model for forecasting bluetongue in India 

 

Apart from understanding the role of intrinsic and extrinsic factors in 

determining the severity of BTV outbreaks at different spatial and temporal 

scales, statistical models also help in making predictions in unknown areas 

and times.  These predictions help to inform policy makers for timely 

control of disease by vector abatement or vaccination.  Currently, there is a 

system of forecasting bluetongue and other livestock diseases (a total of 

fifteen diseases) in India.   The forecasting model developed by (Sudhindra 

& Rajasekhar 1997) uses logistic regression and all diseases (fifteen 

economically important livestock diseases) are forecast two months in 

advance and not updated by retraining the model with new data or new 

methods.  Presence and absence forecasting is done at district level over the 
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whole of India.  Control of bluetongue using predictions (presence and 

absence) at district level is very difficult considering the size of each district 

and the large number of villages involved (average = 900 villages per 

district in three states of South India) and the diversity of landscape, climate 

and host conditions.  Bluetongue occurs with varying severity in each 

district and there is inter-annual variability in South India.  Thus presence 

and absence predictions will be of very little help in planning control 

measures (vaccination or vector control).  Therefore, it is important to have 

predictive models (predicting outbreak numbers) at various spatial and 

temporal scales for effective management of bluetongue in South India. 

7.5.3 Temporal predictions 

  

Temporal analysis of bluetongue outbreaks quantified the role of climate in 

determining temporal variability of bluetongue in Andhra Pradesh and a 

monthly forecasting model developed, which can help disease managers to 

employ veterinary personnel and other resources to control the disease in a 

timely manner (Chapter 3).  The forecasting model developed at the state 

level will be very helpful in predicting hyper endemic years as the model 

captures both endemic and hyper endemic years, but needs further 

improvement to be used in early warning system by incorporating other 

seasonal variables such as relative humidity and wind speed and fine scale 

rainfall and temperature data.  The model was developed using past 

outbreak data (no vaccination was carried out in the past).  Therefore, the 

current time series model has to be updated in the next few years when 

vaccination is carried out and also using finer resolution climate data.  The 

time series modelling framework can also be applied to other two endemic 
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states with different seasonality and inter-annual variability in outbreaks.  

Temporal predictive models in the past were based on linear regression 

ignoring temporal autocorrelation.  ARIMA or SARIMA are not suitable 

for count data as discussed in the introduction (Chapter 1).  Bayesian time 

series models accounting for temporal autocorrelation have not been 

applied to bluetongue data to date. 

7.5.4 District level spatial analysis of bluetongue outbreaks  

 

District level spatial risk maps (Chapter 4) will be very helpful to the 

disease managers to plan and utilise their limited resources to control the 

disease in high risk areas using vaccination and vector control measures.  

The methodology developed can also be extended to analyse other 

livestock diseases which are causing huge economic losses to the country 

and also affecting the livelihood of farmers.  Overall the spatial risk of 

bluetongue at district level is attributed to host and land cover predictor 

variables and the inter-annual variability in bluetongue outbreaks is 

determined by climatic variation (both temperature and rainfall). 

7.5.5 District level annual predictions of BTV outbreaks 

 

Currently, there is no system of forecasting outbreak numbers (as opposed 

to presence) for any livestock disease in India as the NADRES system 

discussed earlier predicts presence and absence of a disease at district level.  

District level annual predictions (Chapter 5) using Bayesian model by 

accounting for spatial and temporal autocorrelation will be effective to plan 

the control measures well in advance as the bluetongue season starts in the 

month of September giving effective lead time for the disease managers.  
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The correlation between observed and predicted BTV outbreaks for the 

year 2009 was poor, but the training model shows very high correlation (r2= 

0.99) and the cross validation statistics (CPO) are encouraging for the 

modelling approach to be used, alongside improved environmental 

covariates, in forecasting BTV outbreaks at district level.   

7.5.6 Lead times for forecasts 

 

The lead times for the temporal and spatio-temporal predictive models 

depend on the requirements of the end users.  The forecasting system 

should constantly be updated by improving surveillance for early detection 

and also incorporating additional data on both climatic and non-climatic 

factors.  Biologically, the feasible lead time that can be built into early 

warning frameworks also depends on the life history parameters of the 

potential vectors for bluetongue.   The time series forecast (state level) 

using rainfall at lag 2 can be effectively used to forecast the disease two 

months in advance for the state level models (Chapter 3).  In the district 

level annual forecast (Chapter 5) developed, the lead time (approximately 

6 months until it is disseminated to the stakeholders), which can be 

effective for the disease managers to channelize their resources for vector 

control or vaccination.   

Bayesian methods offers advantages over traditional frequentist methods 

by accounting for unobserved or unavailable predictor variables and thus 

the regression co-efficients obtained are reliable and can be used for 

developing predictive models.  Use of Bayesian methods is gaining 

importance in public health, but the focus is more on non-infectious 
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diseases.  Use of such methods is not very common in veterinary 

Epidemiology.   

7.5.7 Stakeholders using risk maps and predictive models 

 

The predictive models developed in this thesis will be helpful to disease 

managers at different hierarchical levels.  Generally, the current system of 

veterinary and animal husbandry department in South India operates at 

broadly three levels.  The Animal Husbandry director (state level) is the 

chief officer and head of the department.  At the second level is the district 

level officer, who is responsible for the district level activities.  At the third 

level is the Veterinary Officer who works at the village level.  The state 

level officer is mainly responsible for taking any decision with respect to 

disease control measures and is supported by Joint directors for each 

department (extension, animal health, statistics).  The district level officer 

looks after the district level activities and monitors the veterinary officers 

for successful implementation of any policy (vaccination, extension 

activities or implementing any scheme).   The veterinary officers working 

in different villages are responsible for treating of animals, vaccination, de-

worming, and extension activities.  The veterinary officer is the person who 

actually reports the disease which is later on compiled at district level.   

The state level time series models (Chapter 3) and district level risk maps 

(Chapter 4) will be helpful to state veterinary officers to plan and allocate 

resources (vaccinations, personnel).  The district level officers will be 

informed by the state level officer about the yearly district level forecast 

(Chapter 5) to plan ahead for vaccinations, health camps, and extension 
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activities to promote vaccination by the villagers in case of higher risk 

predictions for that particular year and routine vaccination if there is low to 

moderate risk of bluetongue for that particular year.  The village level 

predictions (both presence & absence and case numbers) will be helpful to 

both district level officers and veterinary officers to plan vaccination in 

higher risk areas on priority basis and also creating awareness among the 

farmers.  The targeted vaccination at village level will not only help in 

controlling the disease, but also order number of doses required to avoid 

wastage of vaccines.  The vaccines are normally provided based on the 

livestock population and there is no risk map or predictions at village level 

for ordering vaccine doses.   

7.5.8 Risk communication to stakeholders 

 

Risk maps and predictive models developed at different spatial and 

temporal scales need to be disseminated to stakeholders.  The static risk 

maps (presence & absence or case numbers) can be disseminated in the 

form of leaflets or maps.   The presence and absence risk maps (chapter 2) 

can be provided to different stakeholders for different purposes.  The state 

level authorities can be informed about the bluetongue risks in their 

respective state.  The village level predictions of case numbers can be 

provided to the district level officers in the table format (list of villages with 

predictions of case numbers), who in turn can inform the village level 

Veterinary officers to carry out vaccinations and awareness campaigns in 

high risk areas.  The state level time series predictions can be disseminated 

in the form of bulletins two months in advance to the state level officers for 
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planning the control measures, along with annual district level predictions.   

The risk maps and predictions can also be provided in the website form for 

the stakeholders along with the instructions on how to use such maps and 

predictions.   The risk maps and predictions at different spatial and temporal 

scales can also be used by the researchers and epidemiologist working on 

bluetongue to plan surveillance and vector surveys.  The interaction 

between the stakeholders, epidemiologist and researchers at regular 

intervals can help improve the risk maps and predictions. 

7.6 Summary and conclusions 

 

The analyses presented in different chapters help to better understand the 

epidemiology of bluetongue in South India.   Although different  suites of 

risk factors (satellite derived variables, host, land cover and climate) were 

considered in the analyses, additional data on herd immunity, farm level 

factors, information on direction and distance on migration of sheep and 

other socio-economic factors will help in better explaining the structured 

and unstructured heterogeneity in the bluetongue outbreak data.  The 

predictive models developed in this thesis at various spatial and temporal 

scales can be helpful in controlling BTV.  Although the space-time “out of 

fit” forecast does not show close correspondence with the observed 

outbreaks, but the training model shows good (99%) correspondence with 

observed outbreaks and, in combination with predictive models at other 

spatial (district level and village level) and temporal (state level) scales, 

may eventually contribute to an Early Warning System for bluetongue in 

India, but there is clearly much more work to be done.   The model 
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framework presented here can be supplemented with data on vaccination, 

immunity, vector abundance and socio-economic factors.  When the time 

comes, accurate predictions can be disseminated to the stakeholders by 

means of website, leaflets, and bulletins. 
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