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Temperature and Culicoides-transmitted viruses 

ABSTRACT 

Culicoides biting midges are economically important as vectors of several arboviruses 

of domestic and wild animals. The most important of these viruses are bluetongue 

virus (BTV), which infects ruminants, and African horse sickness virus (AHSV), 

which infects equids. Climatic factors can affect the capacity of Culicoides to transmit 

these viruses by influencing the size of adult Culicoides populations and the 

proportion of adults within a population capable of transmitting the viruses. Here, I 

report the results of a series of studies investigating the influence of one such factor, 

temperature, on virus transmission. The optimum temperatures for recruitment of adult 

midges from the immature stages were estimated to be 25-30°C for C. nubeculosus 

and 25-35°C for C. variipennis sonorensis, while the minimum temperatures for 

development were 8.1°C and 10.7°C respectively. The proportion of adult C. 

variipennis sonorensis capable of transmitting BTV and AHSV, as well as epizootic 

haemorrhagic disease virus (EHDV) was greatest at 27-30°C. Thus although longevity 

of adult C. variipennis sonorensis was reduced at these high temperatures, this was 

more than compensated for by the accompanying decrease in the duration of the viral 

extrinsic incubation period (EIP). In contrast, at cooler temperatures (15-17°C) adult 
longevity was extended, but the EIP was disproportionately prolonged meaning that 

few adult midges were capable of virus transmission. The impact of temperature on 

the vector competence of Culicoides vector populations (i. e. proportion of midges 

with virus susceptible genotypes that develop susceptible phenotypes) varied with the 

virus species and serotype. Vector competence increased with temperature for C. 

variipennis sonorensis infected with AHSV4 or EHDV1, whereas temperature had no 

effect on vector competence of C. variipennis sonorensis infected with BTV 10 or 
BTV16 and C. imicola infected with AHSV8. In addition, I found that exposure of 
immature C. nubeculosus (a non-vector species) to temperatures close to their upper 
lethal limit (33°C) could induce vector competence for BTV and AHSV. The 

distribution of Culicoides species is also influenced by climate and here I show that 

the range of C. imicola (principally an Afro-Asian species) in Europe is limited by 

temperature. The information from these studies can be used to assess how global 

warming will affect the distribution and seasonal occurrence of BTV and AHSV. 
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General introduction 

CHAPTER 1: GENERAL INTRODUCTION' 

1.1 INTRODUCTION 

Climate change is one of the most serious environmental issues of our day. In the last 

century the global mean temperature rose by 0.5°C (Jones and Wigley, 1990) and if no 

steps are taken to limit greenhouse gas emissions, temperatures could rise by a further 

2°C by 2100 (Intergovernmental Panel on Climate Change, 1996; Houghton, 1997). 

This predicted rate of change is greater than global temperatures have changed at any 

time over the past ten thousand years. In addition, changes in precipitation, wind 

patterns and climate variability are likely (Houghton, 1997). The impact of these 

changes will be enormous. 

One of the most immediate and noticeable impacts of climate change will be an 

alteration in the distribution and abundance of insect species (Sutherst, 1990). This is 

particularly worrying in the case of insects that transmit pathogens or parasites to 

humans and livestock, since it is also likely to affect the prevalence of insect-borne 

diseases. 

Culicoides biting midges (Diptera: Ceratopogonidae) are economically important as 

vectors of several arboviruses of domestic and wild animals, including bluetongue virus 

(BTV), which infects ruminants and African horse sickness virus (AHSV), which 
infects equids. Indeed, the diseases caused by these viruses, bluetongue (BT) and 
African horse sickness (AHS), are of such major international concern that they have 

attained Office International des Epizooties (OIE) list `A' status. That is, diseases 

which have the potential to spread rapidly from one country to another, to cause high 

mortality and morbidity in susceptible animals, and to affect international trade in 

livestock and livestock products. World-wide it has been estimated that BTV results in 

losses of $3 billion/year (Tabachnick et al. 1996). The effects of AHSV are also 
devastating and during the most recent outbreak of AHSV in Iberia and Morocco 

(1987-1991) 2000 horses died and more than 350,000 had to be vaccinated (Rodriguez 

et al., 1992; Mellor 1993). 

'This chapter will be published in an edited form as: Wittmann, E. J. and Baylis, M. (2000). Climate 
change: effects on Culicoides-transmitted viruses and implications for the UK. The Veterinary 
Journal, in press. 
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General introduction 

To assess the potential impact of climate change on Culicoides-transmitted viruses, 

particularly with regards to Europe, it is essential first to understand how climatic 

factors affect the vector and the viruses. Here I begin with an overview of Culicoides 

biology, BTV and AHSV, and the capacity of Culicoides to transmit these viruses. I 

then describe what is currently known about the influence of climate and weather on 

Culicoides and virogenesis and highlight the areas where further information is 

required if we are to gain insight into the potential influence of climate change on the 

viral diseases. Finally, I describe the aims of this thesis. 

1.2 CULiCOlDES BTTING MIDGES 

Culicoides biting midges (Figure 1.1) are among the world's smallest haematophagous 

flies, ranging in size from 1-3 mm (Meiswinkel et al., 1994). They occur on all 

inhabited landmasses, except for New Zealand, the Hawaiian Islands and Patagonia 

(Boorman, 1993; Meiswinkel et al., 1994) and there are at least 1210 different species 

(Borkent and Wirth, 1997). 

Life history 

The life cycle consists of egg, four larval instars, pupa and adult stages. The immatures 

require moisture and organic matter for development and breeding sites include damp 

or saturated soils, bogs, marshes, swamps, tree holes, animal dung and rotting fruits or 

other vegetation (Meiswinkel et al., 1994; Mellor, 1996). The duration of the life cycle 
depends on the species and climatic conditions, varying from 7 days in the tropics to 7 

months in temperate regions, where most species diapause as fourth instar larvae 

during winter (Braverman, 1994). The life-span of the adults is usually short and also 
depends on the ambient conditions. Most adults survive less than 20 days, although 

occasionally they live for up to 90 days (Mellor et al., 2000). 

Females feed on blood, which provides protein for the development of eggs and one 
blood-meal is usually required for each batch of eggs matured. The frequency of 
feeding is therefore linked to the rate of egg development, which is itself dependent on 

the species and the ambient temperature. Many species blood-feed on a range of hosts, 

for example, C. imicola will feed on cattle, sheep, horses, pigs and birds (Braverman 

12 



General introduction 

Figure 1.1 Culicoides spp. Adults are usually 1-3 mm in length, with grey and white 

patterned wings. Image obtained from Blanton and Wirth (1979). 

and Phelps, 1981), although some species do have strong host preferences (Kettle, 

1995). 

In the majority of species adult activity is crepuscular and/or nocturnal (Kettle, 1995) 

and is greatest when evening and night-time conditions are warm, humid and calm 

(Boorman, 1993). Culicoides undertake flight to seek mates, blood-meals, shelter or 

suitable breeding sites. They usually only fly short distances from their larval habitat 

(Kettle, 1995), but can be carried on the wind for distances possibly up to 700 km 

(Sellers, 1992). 

Economic importance 

Culicoides species are of economic importance for two reasons. First, they can be a 

biting nuisance, limiting tourism and outdoor activities in many parts of the world (e. g. 

Scotland, USA, Caribbean, South America, Australia, and islands in the Pacific and 

13 
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Indian Oceans; Kettle, 1995), while in horses Culicoides bites can cause a severe 

allergic dermatitis (sweet itch). Second, Culicoides have the capacity to transmit a 

range of pathogens and parasites to man and livestock. For example, Culicoides have 

been associated with the transmission of 12 species of protozoa and 18 species of 

filarial nematodes (Linley, 1985). However, it is as vectors of arboviruses (i. e. viruses 

transmitted to vertebrates by insects or acarines and which multiply in both vertebrate 

and invertebrate hosts) to livestock that Culicoides attain their full economic 
importance. Fifty-three viruses have been isolated from Culicoides (Meiswinkel et at., 

1994) and as mentioned previously two of these, BTV and AHSV, cause diseases of 

such international concern that they have OIE list `A' status. This thesis focuses 

primarily on these two virus species. 

1.3 BLUETONGUE VIRUS AND AFRICAN HORSE SICKNESS VIRUS 

BTV and AHSV are both double-stranded RNA viruses within the genus Orbivirus of 

the family Reoviridae. The virions, which are about 70 nm in diameter, consist of a 

core containing 10 segments of double-stranded RNA and composed of five proteins 

and an outer capsid made up of two further proteins (Mertens, 1994; Figure 1.2). At 

present 24 BTV serotypes and 9 AHSV serotypes are recognised. 

Vertebrate Hosts 

BTV 
, 
infects all species of ruminants, although only causes severe disease in certain 

breeds of sheep (e. g. fine wool and mutton breeds; MacLachlan, 1994) and in some 

species of deer (Robinson et al., 1967; Stair et al., 1968). Mortality rates in sheep vary 
from 2-30% and the clinical symptoms include fever, depression, hyperaemia of buccal 

and nasal mucosae, nasal discharge, excess salivation, oedema of the head and neck, 
lameness, stiffness, coronitis and torticollis (Erasmus, 1990; Verwoerd and Erasmus, 

1994; Goering et al., 1995). Infection of pregnant ewes can also cause abortion or 
foetal abnormalities. Convalescent periods can be lengthy and sheep may shed their 
fleece (Geering et al., 1995). 

AHSV infects equids and occasionally dogs. Clinical signs result from the impaired 

function of the circulatory and respiratory 'systems and include serous effusions and 
haemorrhage in various organs and tissues (Howell, 1963). Mortality rates in horses 
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Figure 1.2 Schematic diagram of the organisation of the structural proteins of an 

orbivirus virion. The outer capsid is composed of structural proteins VP2 and VP5. 

The core consists of proteins VP7 and VP3, surrounding VPI, VP4 and VP6, as well 

as the double-stranded RNA. Image obtained from Thevasagayam (1998). 

vary from about 70% with serotype 9 to 95% with serotypes 1-8 (Coetzer and 

Erasmus, 1994), making it one of the most lethal horse diseases. However, the disease 

in donkeys and mules is less severe and in zebras clinical signs may be absent 

altogether (Mellor, 1994). Although the disease in dogs can be fatal, dogs are generally 

considered to be dead-end hosts, as Culicoides do not readily feed on them (e. g. 
Braverman and Chizov-Ginzburg, 1996) and they usually become infected by eating 

virus-contaminated horse meat. 

Distribution 

BTV occurs between latitudes of approximately 40°N to 35°S (Mellor, 1990; Mellor 

and Boorman, 1995), although in parts of North America it can occur up to almost 
50°N (Dulac et al., 1988; Dulac et al., 1989). Within these areas, it is found in Africa, 
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Asia, North America, South America, Australia and some islands in the tropics and 

subtropics (Gibbs and Greiner, 1994). There have also been sporadic outbreaks in 

southern Europe, for example in Portugal and Spain (1956-60), (Campano Lopez and 

Sanchez Botija, 1958; Anon, 1960) and on the Greek islands of Lesbos (1979) 

(Vassalos, 1980) and Rhodes (1980) (Dragonas, 1981). The outbreak in Iberia was the 

most serious ever recorded and caused the deaths of more than 179,000 sheep 

(Campano Lopez and Sanchez Botija, 1958). 

More recently (1998-1999) BTV was reported from the Greek Islands of Rhodes, Kos, 

Samos, Lesbos, Evia and Chios (Anon, 1998; Anon, 1999e; Anon, 2000b). Outbreaks 

of BTV also occurred for the first time in European Turkey (Anon, 1999c), mainland 

Greece (Anon, 1999d, e) and Bulgaria (Anon, 1999b). The outbreak in the Burgas 

region of Bulgaria (42-43°N) was in fact the furthest north that BTV has occurred in 

Europe. 

AHSV is not as widely distributed as BTV and is usually confined to sub-Saharan 

Africa (Mellor, 1993). Its spread into North Africa and countries around the 

Mediterranean sea and Asia has been hindered by the Sahara Desert (Coetzer and 

Erasmus, 1994). However as with BTV, it is capable of making periodic excursions 

beyond its enzootic zone (Mellor, 1996). There have been two outbreaks of AHSV in 

Europe, which were in Spain in 1966 (Diaz Montilla and Panos Marti, 1968) and Spain 

and Portugal between 1987 and 1990 (Lubroth, 1988; Rodriguez et al., 1992). In 

1989, the virus also spread from Iberia into northern Morocco, where it persisted until 
1991, so that in total the outbreak lasted five years. This persistence was 

unprecedented, as prior to this the longest that AHSV survived outside of its enzootic 

zone was 2-3 years (Mellor, 1998). The furthest north that AHSV has occurred is 

Madrid (40°N) (Lubroth, 1988). 

Transmission 

Culicoides were first implicated as vectors of BTV and AHSV by Du Toit (1944) (and 

see Wetzel et al., 1970), when he demonstrated that C. pallidipennis (= C. imicola) 

was able to transmit BTV from infected to susceptible sheep, and AHSV from an 
infected to a susceptible horse. Although Culicoides are considered to be the principal 
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vector of these viruses, other arthropods have also been connected with BTV and 

AHSV. For example, the pajaroello tick Ornithodoros coriaceus has been shown to 

biologically transmit BTV to susceptible animals (Stott et al., 1985), while the sheep 

ked Melophagus ovinus is a mechanical vector of BTV (Luedke et al., 1965). 

Anopheles stephensi, Culexpipiens (Ozawa and Nakata, 1965), Aedes aegypti (Ozawa 

et al., 1966), the camel tick Hyalomma dromedarii (Awad et al., 1981), and the brown 

dog tick Rhipicephalus sanguineus sanguineus (Dardiri and Salama, 1988) have all 

been shown to biologically transmit AHSV to susceptible horses. In addition, trans- 

stadial transmission of AHSV from larvae to nymphs and from nymphs to adults has 

been demonstrated in the camel tick and the brown dog tick (Awad et al., 1981; 

Dardiri and Salama, 1988). However, it is doubtful whether these additional species 

are involved in the maintenance and transmission of BTV and AHSV in the field. 

To date there is no evidence for the transovarial transmission of BTV or AHSV by 

Culicoides. However, work in this area is limited (Jones and Foster, 1971; Nunamaker 

et al., 1990). The inability of Culicoides to transovarially transmit the viruses is 

thought to be associated with the ovarial sheath (i. e. outer covering of the ovariole), 

which prevents the viruses from entering the developing eggs (Fu, 1996). 

The lack of transovarial transmission of the viruses in Culicoides, combined with the 

relatively short duration of BT and AHS viraemias in infected vertebrate hosts 

(generally <30 days; Erasmus, 1990; Barnard et al., 1994; Coetzer and Erasmus, 1994; 

Fassi-Fihri et al., 1998; Hamblin et al., 1998), means that adult Culicoides must be 

present for a large proportion of the year if the viruses are to persist in a region. Thus 

in enzootic areas, there must be continual cycles of transmission between the adult 

vectors and vertebrates, with any adult-free period being less than the maximum 
duration of the viraemia (Mellor, 1993,1994). Winter conditions play a crucial role in 

determining whether the viruses can become enzootic, due to the impact of low 

temperatures on adult survivorship. For example, Sellers and Mellor (1993) found that 
C. imicola adults could only survive the winter (and the viruses therefore persist), in 

areas where the average daily maximum temperature during the coldest month of the 

year was 212.5°C. 
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Vector species 

To date 24 Culicoides species have been associated with BTV, while 6 have been 

linked with AHSV. These figures include a) species from which BTV and AHSV have 

been isolated in the field b) species which have been shown to become infected with 

the viruses following the ingestion of a viraemic blood-meal and c) species which have 

been shown to biologically transmit the viruses (Tables 1.1 and 1.2). In addition, a 
further 5 species (C. arakawae, C. circumscriptus, C. gemellus, C. shultzei and C. 

nudipalpis) are suspected vectors of BTV, although as yet there is no evidence to 

confirm this (Dyce, 1989; Bi et al., 1996; Meiswinkel and Baylis, 1998). 

Culicoides imicola is considered to be the most important vector of BTV and AHSV 

in Europe (Mellor, 1990,1996). This species is principally Afro-Asian, but in 1982 it 

was recorded for the first time in Europe, from Cordoba in southern Spain (Mellor et 

al., 1983). It is now known to occur across most of south-western Iberia, up to 

41°17N in Portugal and 40°N in Spain (Rawlings et al., 1997). In addition, it has been 

recorded from the Greek islands of Lesbos (Boorman and Wilkinson, 1983), Rhodes 

(Boorman, 1986), Chios, Kos, Samos (Mellor, pers. comm. ) and Evia (Patakakkis, 

unpub. obs. ). In 1999 it was also discovered on mainland Greece, in the provinces of 
Chaldithiki, Larisa and Magnisia (Patakakkis, unpub. obs. ). 

BTV has also been isolated from C. obsoletus in Cyprus (Mellor and Pitzolis, 1979) 

and AHSV has been recovered from mixed pools of C. obsoletus and C. pulicaris in 

Spain (Mellor et al., 1990). Both species are widely distributed in Europe (Mellor, 

1987). However, their role in disease transmission is unclear. For example, in Spain 

they are considered to be unimportant since they are only present in low numbers 
during the months when BTV and AHSV outbreaks typically occur (Ortega et al., 
1998). In contrast, during the 1999 BTV outbreak in Bulgaria, C. obsoletus was the 

most numerous species trapped at infected sites, while C. imicola was absent (Mellor, 

pers. comm. ). 

Also present in Europe are C. impunctatus and C. nubeculosus. These species have 
been orally infected with BTV in the laboratory, although the infection rates (Le. 

proportion of individuals susceptible to the virus) were very low (Jennings and Mellor, 
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Table 1.1 Culicoides species associated with BTV. 

Subgenus Species Virus 
Isolation 

Oral Transmission 
Infection 

Reference 

Avaritia C. actoni ++ Standfast et al. (1985) 

C. bolitinos + + Barnard et al. (1998) 
Venter et al. (1998) 

C. brevipalpis + Standfast et al. (1985) 

Muller et al. (1982) 
St George & Muller (1984) 

C brevitarsis + ++ Muller (1985) 
Standfast et a!. (1985) 
Muller (1987) 
Bellis et al. (1994) 

C. fulvus + ++ Standfast et al. (1979) 
Standfast et al. (1985) 

C. gulbenkiani + Walker & Davies (1971) 
(= C tororoensis) 

Du Toit (1944) 
C. imicola + + + 

Nevill et al. (1992) 
Venter et al. (1991) 
Venter et al. (1998) 

C. obsoletus + + Mellor & Pitzolis (1979) 
Mellor & Jennings (1986) 

C. orientalis + Sendow et al. (1993) 

C. pusillus + Mo et al. (1994) 

Standfast et al. (1985) 
C. wadai + + Dellis et al. (1994) 

McColl et al. (1994) 

Beltranmyia C. pycnostictus + Nevill et al. (1992) 

Culicoides C. magnus + Venter (pers. comm. ) 

C. impunctatus + Mellor & Jennings (1986) 
Jennings & Mellor (1988) 

Diphaeomia C. debilipalpis + Mullen et al. (1985) 

C. stellifer + Mullen & Anderson (1998) 

Hoff mania C. insignis + + + Greiner er al. (1985) 
Tanya et al. (1992) 

C lnei + Walker & Davies (1971) 
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Table 1.1 Continued. 

Subgenus Species Virus Oral Transmission Reference 
Isolation Infection 

Hoff mania C. peregrinus + Standfast et al. (1985) 

C. venustus + Jones et al. (1983) 

Monoculicoides C. nubeculosus 

C. variipennis 

Oecacta 

Similis group 

C. oxystoma 

C. exspectator 

Mellor & Boorman (1980) 

++ Mellor & Jennings (1986) 
Jennings & Mellor (1988) 
Chapter 5 

Foster et al. (1968) 

+++ 
Foster & Jones (1973) 
Jones & Foster (1978) 
Jones et al. (1981) 

+ Standfast et al. (1985) 

+ Nevill et al. (1992) 

Table 1.2 Culicoides species associated with AHSV. 

Subgenus Species Virus 
Isolation* 

Oral Transmission Reference 
Infection 

Meiswinkel & Paweska 
Avaritia C. bolitinos + + (1998) 

Venter et at. (in press) 

Du Toit (1944; cited in 

imicola C + ++ 
Wetzel et al., 1970) 

. Nevill et at. (1992) 
Venter et al. (in prep. ) 

C obsolet us + Mellor et at. (1990) 

Culicoides C. pulicaris 

Monoculicoides C. nubeculosus 

+ Mellor et al. (1990) 

+ Mellor et at. (1998) 
Chapter 5 

Boorman et at. (1975) 
C. variipennis ++ Mellor et at. (1975) 

Wellby et al. (1996) 

*The isolation of AI-ISV from C. gulbenkiani reported by Meiswinkel et at. (1994) was incorrect (Mciswinkel, 

1997). 
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1988). However, the simultaneous infection of C. nubeculosus with BTV and 
Onchocerca cervicalis microfilariae can enhance its susceptibility (Mellor and 
Boorman, 1980). Furthermore, the susceptibility of this species to AHSV is greatly 
increased when the immature stages are initially exposed to elevated temperatures 

(Mellor et al., 1998). 

1.4 CULuCOIDES AS A VECTOR 

Oral infection 

In the wild, vector Culicoides become infected with arboviruses when they ingest a 
blood-meal from a viraemic vertebrate host. The blood and virus are deposited into the 

posterior region of the insect's midgut. The virus particles then attach themselves to 

the luminal surface of the gut cells, infect these cells and then replicate in them. 

Progeny virions are released through the basement membrane to the haemocoel where 

they infect secondary target organs, including the salivary glands. After replication in 

the salivary glands, viral transmission can occur during subsequent biting activity 
(Mellor, 1990; Figure 1.3a). The bite from a single midge is sufficient to infect a 
susceptible vertebrate host (e. g. Foster et al., 1968). 

Individuals that have the ability to become infected with a virus after ingestion of a 

viraemic blood-meal and to subsequently transmit virus by bite are classed as `vector 

competent'. The interval between virus ingestion and the subsequent ability to transmit 

virus is termed the extrinsic incubation period (EIP). The duration of the EIP is 

dependent on temperature and takes about 10 days at 25°C (Mullen et al., 1995; 

Wellby et al., 1996). 

However, even within a vector species of Culicoides, only a proportion of individuals 

are likely to be competent to transmit a particular arbovirus (Jones and Foster, 1978; 
Jennings and Mellor, 1987). Individuals that are refractory to infection may possess a 
midgut infection barrier, where virus is unable to enter the midgut cells, or a midgut 
escape barrier, where virus can replicate in the midgut cells but is unable to exit into 
the haemocoel (Jennings and Mellor, 1987). Fu et al. (1999) have also reported the 
existence of a dissemination barrier, where virus that enters the haemocoel is unable to 
infect secondary target organs (Figure 1.3b). 
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Figure 1.3 Arbovirus infection of haematophagous insects. (a) Schematic of the cycle of an arbovirus 
in a vector. (b) Hypothesised barriers to arbovirus infection in haematophagous insects. MIB = midgut 
infection barrier, MEB = midgut escape barrier, DB = dissemination barrier, TOTB = transovarial 

transmission barrier, SGIB = salivary gland infection barrier and SGEB = salivary gland escape 
barrier. (Adapted from Mellor et al., 2000). 
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These barriers are under genetic control and Tabachnick (1991) demonstrated that the 

susceptibility of C. variipennis to BTV was determined by a single gene, with a major 

locus and a modifier. The major locus acts via a maternal effect (i. e. the maternal 

genotype determines the progeny phenotype) and paternal imprinting (i. e. the paternal 

gene is dominant in the offspring). In addition, the susceptibility of Culicoides to 

arboviruses may be influenced by extrinsic factors, including temperature (Mullens et 

al., 1995; Wellby et al., 1996; Mellor et al., 1998). 

Vectorial capacity 

The ability of a Culicoides population to transmit a virus to a vertebrate population can 

be assessed by determining its vectorial capacity (C), according to the following 

equation: 

C= ma2Vp" / (-lnp) 

where C= number of new infections per case per day, m= the number of vectors per 

host, a= number of blood-meals taken by a vector per host per day, V= vector 

competence, p= daily survival rate of the vector, and n= extrinsic incubation period in 

days (Mullens, 1992). All of these parameters can be affected by the ambient 

conditions. 

1.5 CLIMATE AND CULUCOIDES 

The spatial and temporal incidence of BTV and AHSV are affected by the distribution 

and vectorial capacity of Culicoides vector populations. In turn, these are influenced 

by climatic factors such as temperature, precipitation, humidity and wind. Of these 

factors, temperature has the greatest influence on virus transmission and our current 

knowledge in this area is described below. However, there are several aspects of the 

relationship between temperature and virus transmission which are poorly understood. 

If we wish to gain insight into the impact of climate change on the viral diseases, it is 

essential that these aspects are investigated further. 

Temperature and distribution of Culicoides 

The geographic ranges of most insect species are influenced by temperature and low 

temperatures tend to be more significant than high temperatures as determinants of 
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distribution (Gates, 1993). For example, there is some evidence that the northern limit 

of C. imicola in Iberia is determined by low temperature (Baylis and Rawlings, 1998; 

Rawlings et al., 1998), although the exact temperature requirements of this species 

have not yet been established. However, there is concern there are areas of Europe 

that, while being climatically suitable, have yet to be colonised by C. imicola (Rawlings 

et al., 1998). Understanding the relationship between temperature and the distribution 

of C. imicola is therefore critical if we are to determine where this vector could 

become established in Europe. Additionally, these data could be used to determine 

where C. imicola could occur if conditions warm with climate change (e. g. 2°C 

increase in the mean annual temperature corresponds to a northward shift of =200 km; 

Hughes, 2000). 

Temperature and vectorial capacity 

Temperature can influence the vectorial capacity of a Culicoides population both 

through changes in the overall size of the adult population and in the proportion of 

adults within the population capable of transmitting virus. 

Adult population size 

Very few midges ever transmit virus due to the low probability that they will a) initially 

feed on a viraemic host, b) be competent to transmit virus, c) survive the viral EIP and 
d) subsequently feed on a susceptible host. Nevertheless, while the chance of "a given 
individual satisfying all these criteria is low (e. g. only 1 in 35000 female C. brevitarsis 

could transmit BTV; Muller et al., 1982), this can be compensated for by the 

potentially huge midge population sizes (e. g. up to one million C. imicola may be 

caught in a single light trap in a single night; Meiswinkel, 1998). Temperature can 

greatly affect the size of an adult population (and hence the potential for viral 
transmission) through its impact on a) recruitment of adults from the immature stages 
b) adult survivorship and c) adult activity. 

The influence of temperature on recruitment of adults is two-fold. First, the 
development rate of Culicoides from the egg to the adult stage has been shown to be 
directly related to temperature (within favourable limits; e. g. Edwards, 1982; Kitaoka, 
1982; Mullens and Rutz, 1983; Vaughan and Turner, 1987; Bishop et al., 1996). Thus 
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the warmer the weather, the shorter the life cycle and the greater the number of 

generations and adults that can be produced in a season. Second, survivorship of the 

immatures to adulthood is influenced by temperature and there is usually an optimal 

range of temperatures where survivorship is maximised (Kitaoka, 1982; Bishop et at., 
1996). Recruitment of adults is therefore greatest at temperatures where development 

is fast and immature survivorship is high and is limited at temperatures where either 

one or both of these factors are reduced. 

However, no work has been carried out into the influence of temperature on the 

development of European Culicoides vector species. Both the optimum and lowest 

temperatures for immature development should be established. The former will give an 
indication of the times of year when recruitment of adults will be greatest and hence 

periods of risk for virus transmission. The latter will give an indication of whether 
development and therefore adult vectors could occur throughout the year, which is 

critical for the persistence of the viruses. Ideally, such work would involve C. imicola, 

as well as a Palaearctic Culicoides species. However, C. imicola has yet to be 

successfully colonised and a suitable model species must therefore be used in its place. 

Survival of adult Culicoides is adversely affected by high temperatures (Hunt et al., 
1989; Wellby et al., 1996) and this is considered further below. The frequency of key 

adult activities such as mating, host-seeking, blood-feeding and oviposition can affect 
the population growth rate. Warm conditions generally increase activity (Walker, 

1977; Blackwell, 1997; Kettle et al., 1998), while temperatures below 10°C for C. 

variipennis (Nelson and Bellamy, 1971) and 18°C for C. brevitarsis (Murray, 1987) 

inhibit activity. 

Proportion of vectors 

Temperature can influence the proportion of adult Culicoides capable of transmitting 

virus by its impact on the biting rate, adult survival, duration of the EIP and vector 
competence. 

The biting rate is a critical factor in vectorial capacity since females must take a 
minimum of two blood meals to transmit virus - the first to acquire the virus and the 
second, after the completion of the EIP, to transmit the virus. Since female Culicoides 
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generally require a blood meal for every batch of eggs they mature, the biting rate is 

largely governed by the time required for the eggs to develop (gonotrophic cycle). 
High temperatures have been shown to reduce the duration of the gonotrophic cycle 
(Linley, 1966; Mullens and Holbrook, 1991) and thereby increase the biting rate. For 

example, female C. variipennis sonorensis blood-feed every 3 days at 30°C and only 

every 14 days at 13°C (Mullens and Holbrook, 1991). 

The relationship between adult survival and the duration of the EIP is also important in 

determining vectorial capacity, since transmission cannot occur unless females live long 

enough to blood-feed after the completion of the viral EIP. However these factors are 

conversely affected by temperature. For example, at high temperatures vector 

survivorship is reduced but virus development is rapid, whereas at low temperatures 

survivorship is extended but virogenesis is slow (Hunt et al., 1989; Mullens et al., 

1995; Wellby et al., 1996). It is therefore necessary to establish at which temperatures 

females are most likely to survive long enough to complete the EIP, as well as the 

range of temperatures over which this can occur. 

Temperature can also influence the vector competence of Culicoides vectors. For 

example, BTV 11 and AHSV9 are unable to develop in C. variipennis sonorensis at 
temperatures below about 15°C (Mullens et al., 1995; Wellby et al., 1996). Hence 

even if a midge is genetically capable of transmitting the virus, it will be unable to do 

so at temperatures below this limit. In addition, within the range of temperatures where 

virus replication may occur, Wellby et al. (1996) found that the infection rate of C. 

variipennis sonorensis with AHSV9 increased with temperature. However, the ability 
of a midge to become infected with a virus (i. e. virus can replicate in the midgut) does 

not necessarily mean that it will be competent to transmit the virus, as some midges 
possess a midgut escape barrier (where virus is restricted to the midgut cells; Jennings 

and Mellor, 1987) or a dissemination barrier (where virus is unable to infect secondary 
target organs; Fu et al., 1999). It is therefore necessary to establish whether vector 
competence could also increase with temperature. However, Mullens et al. (1995) 
found that the infection rate of C. variipennis sonorensis with BTV11 was similar at 
temperatures between 21-32°C. Hence it must also be determined whether the impact 

of temperature on vector competence varies with the virus species and serotype. 
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Temperature can even affect the competence of `non-vector' Culicoides species. 
Culicoides nubeculosus is generally considered to be incapable of transmitting BTV 

and AHSV due to a midgut infection barrier (Mellor et al., 1975; Mellor and Boorman, 

1980). However, in a preliminary investigation Mellor et al. (1998) showed that a 5- 

10°C rise in the immature rearing temperature, from the standard rearing temperature 

of 25°C, could increase the oral infection rate of C. nubeculosus for AHSV from <1% 

to >10%. They suggested that this phenotypic change could result from a `leaky 

midgut', where virus can leak directly into the haemocoel, bypassing the midgut 

barriers. Once in the haemocoel the virus can replicate and be transmitted even by what 

is normally considered to be a non-vector species. However, these results must be 

confirmed using larger sample sizes, while it is also necessary to establish if vector 

competence for BTV in C. nubeculosus can be induced by elevated rearing 

temperatures. In addition, it is important to determine the lowest rearing temperature 

at which vector competence can be induced and whether hot conditions for only part 

of the life cycle can have the same effect. 

The impact of temperature on virus transmission by Culicoides is summarised in Figure 

1.4. 

Other climatic factors 

Precipitation can influence the distribution and abundance of Culicoides species, 
through its affect on the availability of breeding sites. For example, C. imicola breeds 

in wet, organically enriched, soil or mud (Walker and Davies, 1971; Braverman et al., 
1974; Lubega and Khamala, 1976; Walker, 1977; Braverman, 1978), and in Africa it 

tends to occur in areas with rainfall of 300-700 mm per year (Meiswinkel and Baylis, 

1998). Areas with >700 mm rain/annum are probably unsuitable as C. imicola pupae 
drown when breeding sites are flooded (Nevill, 1967). Furthermore, within a site in 
South Africa, Nevill (1971) found that the seasonal abundance of adult C. imicola was 
related to the amount of rainfall in the preceding month and that the greatest annual 
abundance occurred in the year with the greatest rainfall. Across sites in Morocco and 
Iberia, the annually-averaged mean daily catch of C. imicola has been related to the 
annual minimum Normalised Difference Vegetation Index (a measure of photosynthetic 
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Figure 1.4 Influence of temperature on the transmission of BTV and AHSV by 

Culicoides. 

activity which strongly correlates with soil moisture; Baylis and Rawlings, 1998; Baylis 

et al., 1998a). 

Humidity can affect the survival of adult Culicoides. Due to their small size adult 

midges are particularly susceptible to desiccation and Murray (1991) found that even 

brief periods at low humidities reduced the longevity of C. brevitarsis. Humidity can 

also positively affect the level of adult activity (Murray, 1975; Walker, 1977; 

Blackwell, 1997). 

Wind speed and direction can affect Culicoides distribution, through their influence on 

the passive dispersal of the adults. Due to their small size, Culicoides are exceptionally 

susceptible to this means of dispersal. In winds at speeds of 10-40 km/h, at heights up 

to 1.5 km and at temperatures between 12 and 35°C, Culicoides may be carried as 

aerial plankton for distances up to 700 km (Sellers, 1992). This long distance dispersal 
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can result in Culicoides species colonising new areas (Dyce, 1982) and in the 

introduction of virus-infected Culicoides into previously disease free regions. 

Significantly, the majority of BTV and AHSV outbreaks in Europe have been 

attributed to the wind-carriage of infected Culicoides (Sellers et al., 1977; Sellers et 

al., 1978; Boorman and Wilkinson, 1983; Mellor, 1987; Anon, 1999a, b). 

There is also some evidence that wind can adversely affect adult survival. Baylis et al. 
(1998a, b) found that the mortality rate of C. imicola at eight sites in Morocco was 

positively correlated with wind speed, but was not affected by temperature, relative 

humidity or saturation deficit. However, it is not known whether the midges were 

actually killed at the windier sites or simply dispersed. Wind also negatively affects 

activity (Walker, 1977; Blackwell, 1997; Kettle et al., 1998), which is suppressed at 

wind speeds greater than 3 m/s for C. imicola in Kenya (Walker, 1977) and 2.2 m/s for 

C. brevitarsis in Australia (Murray, 1987). 

In summary, climatic factors such as temperature, precipitation, humidity and wind are 

critical in determining the distribution and vectorial capacity of Culicoides populations. 

These in turn will affect the spatial and temporal incidence of BTV and AHSV. 

However, there are several aspects of the relationship between climate and virus 

transmission which are poorly understood. If we wish to gain insight into the impact of 

climate change on BTV and AHSV, it is essential that these aspects are investigated 

further. 

1.6 THESIS PLAN 

In this thesis I begin by describing how temperature affects the development of the 
immature stages of the northern European midge, C. nubeculosus and the North 

American midge, C. variipennis sonorensis (Chapter 2). The latter species was used as 

a model for C. imicola. I then report on how temperature influences the transmission 

of orbiviruses (BTV, AHSV and epizootic haemorrhagic disease virus) by C. 

variipennis sonorensis, through its impact on the EIP, vector competence and adult 
survival (Chapter 3). I also present the results of the first study into the influence of 
temperature on the transmission of AHSV by a field population of C. imicola (Chapter 
4). While Chapters 2-4 focus primarily on the influence of temperature on Culicoides 
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vector species, in Chapter 5I describe a special case, whereby non-vector species can 
become vectors when exposed to high temperatures during their development. I 

investigate this phenomenon using C. nubeculosus infected with BTV and AHSV. In 

chapter 6I identify areas of Europe that have suitable climates for the occurrence of C. 

imicola, both currently and if conditions warm with climate change. Finally, I 

summarise the results and consider how climate change will alter the risk of BTV and 
AHSV in Europe (Chapter 7). 
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CHAPTER 2: EFFECT OF TEMPERATURE ON THE DEVELOPMENT OF THE IMMATURE 

STAGES OF CULICOIDES BITING MIDGES (DIPTERA: CERATOPOGONIDAE) AND 

IMPLICATIONS FOR THE TRANSMISSION OF BLUETONGUE VIRUS AND AFRICAN HORSE 

SICKNESS VIRUS. 

2.1 ABSTRACT 

The size of an adult Culicoides population is dependent on recruitment from the 

immature stages and adult survivorship. Here, I investigated the effect of temperature 

on the development of immature C. nubeculosus and C. variipennis sonorensis. The 

development rate of both species increased linearly between 12.5 and 35°C, while 

immature survivorship was greatest at rearing temperatures of 25 and 30°C for C. 

nubeculosus, and at 25°C for C. variipennis sonorensis. The optimum temperature 

range for development, based on both development rate and immature survivorship, 

was 25-30°C for C. nubeculosus and 25-35°C for C. variipennis sonorensis, while the 

minimum temperatures for development were estimated to be 8.1°C and 10.7°C, 

respectively. Temperatures experienced during the immature stages did not affect 

survival of adult C. variipennis sonorensis, when adults were maintained at a range of 

temperatures. As Culicoides species are the major vectors. of bluetongue virus and 

African horse sickness virus and virus transmission is greatest when there are large 

numbers of vectors, such data will prove useful in predicting where disease outbreaks 

are most likely to occur, both currently and if conditions should warm with climate 

change. 

2.2 INTRODUCTION 

Bluetongue virus (BTV) and African horse sickness virus (AHSV) are both dsRNA 

viruses within the genus Orbivirus of the family Reoviridae. BTV infects all species 

of ruminants, causing severe disease (bluetongue; BT) in certain breeds of sheep 
(MacLachlan, 1994) and in some species of deer (Robinson et al., 1967; Stair et al., 
1968). AHSV infects equids and the disease (African horse sickness; AHS) is most 
devastating in horses, with mortality ranging from 70 to 95% (Coetzer and Erasmus, 
1994). Indeed, BT and AHS are of such major international concern that they have 
been designated as OlE list `A' diseases. 
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BTV and AHSV are transmitted between their respective vertebrate hosts by biting 

midges of the genus Culicoides (Diptera: Ceratopogonidae). In general, outbreaks of 

BT and AHS tend to occur at times of year when numbers of adult Culicoides vectors 

reach their peak (Mellor and Boorman, 1995; Mellor, 1996). Modelling studies have 

also indicated that the size of an adult Culicoides vector population is critical in 

determining both the likelihood and severity of an outbreak, following the 

introduction of virus (Lord et al., 1996). 

The presence of adult Culicoides vectors (even in low numbers) is also critical in 

determining the persistence of BTV or AHSV in a region. Due to the lack of 

transovarian transmission of the viruses in Culicoides (Jones and Foster, 1971; 

Nunamaker et al., 1990) and the relatively short duration of BT and AHS viraemias in 

infected vertebrate hosts (generally <30 days; Erasmus, 1990; Barnard et al, 1994; 

Coetzer and Erasmus, 1994; Fassi-Fihri et al., 1998; Hamblin et al., 1998), adult 

Culicoides vectors must be present for a large proportion of the year if the viruses are 

to persist. Thus there must be continual cycles of transmission between the adult 

vectors and vertebrates, with any adult-free period being less than the maximum 

duration of the viraemia (Mellor, 1993,1994). 

The abundance and seasonality of adult Culicoides vectors are largely dependent on 

recruitment from the developing immatures, which in turn is influenced by 

temperature. For example, the development rates of Australian populations of C. 

brevitarsis (Allingham, 1991; Bishop et al., 1996) and C. subimmaculatus (Edwards, 

1982), Japanese populations of C. arakawae and C. maculatus (Kitaoka, 1982), and of 

a North American species complex, C. variipennis (Mullens and Rutz, 1983; Vaughan 

and Turner, 1987), were found to be faster at higher temperatures. Thus the warmer 

the weather, the shorter the life cycle and the greater the number of generations that 

could be produced in a season. In contrast, however, high temperatures can reduce 

survivorship of the immatures to adulthood (Kitaoka, 1982; Bishop et al., 1996). Thus 

recruitment of adults is greatest at temperatures warm enough for rapid development 

but cool enough for high immature survivorship (optimum temperature range). At 

temperatures which are either colder or hotter than the optimum, recruitment of adults 
is reduced. 
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A number of outbreaks of BT and AHS have occurred in southern Europe (Campano 

Lopez and Sanchez Botija, 1958; Diaz Montilla and Panos Marti, 1968; Vassalos, 

1980; Dragonas, 1981; Rodriguez et al., 1992; Anon, 1998; Anon, 1999b, c, d, e; Anon, 

2000b). Consequently, in order to identify times of midge emergence and periods of 

risk for virus transmission in Europe, both currently and if conditions should warm (as 

predicted by climate change scenarios; Intergovernmental Panel on Climate Change, 

1996), it would be advantageous to quantify the effect of temperature on the 

development of European Culicoides vector species. 

In this chapter, I investigate the effect of temperature on the development of the 

northern European midge, C. nubeculosus. However, this species is generally 

considered to be incapable of transmitting BTV or AHSV (Mellor et al., 1975; Mellor 

and Boorman, 1980), except under unusual circumstances (Mellor and Boorman, 

1980; Mellor et al., 1998; Chapter 5). Nevertheless, given its distribution, C. 

nubeculosus can be used as a model for other Palearctic species, such as C. obsoletus 

and C. pulicaris, which have been implicated in the transmission of these viruses 

(Mellor and Pitzolis, 1979; Mellor et al., 1990). However, the main advantage of 

working with C. nubeculosus is that it has been colonised in the laboratory (Boorman, 

1974). 

The most important vector species of BTV and AHSV in Europe is C. imicola 

(Mellor, 1990; Mellor, 1996). This species is principally Afro-Asian, but has also 

been found in south-western Iberia (Rawlings et al., 1997), mainland Greece 

(Patakkakis, unpub. obs. ) and the Greek islands of Lesbos (Boorman and Wilkinson, 

1983), Rhodes (Boorman, 1986), Chios, Kos, Samos (Mellor, pers. comm. ) and Evia 

(Patakkakis, unpub. obs. ). However, C. 'imicola has proved impossible to rear in the 

laboratory. Hence to provide some insight into the effect of temperature on the 

development of Culicoides species, that originate from warmer climates than those 

experienced in Europe, a laboratory colony of C. variipennis sonorensis (Boorman, 

1974), the major vector of BTV in North America (Mellor, 1990), was used. Two 

previous studies have reported the influence of temperature on the development of C. 

variipennis (Mullens and Rutz, 1983; Vaughan and Turner, 1987). However, there are 

methodological problems associated with both and I consider this further in the 

discussion. 
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The present study was therefore carried out to determine the effect of temperature on 

the development rate and immature survivorship of C. nubeculosus and C. variipennis 

sonorensis, in order to establish both the optimum rearing temperature and the range 

of temperatures over which successful development can occur. In addition, since 

survival of adult Culicoides also affects adult population size, the effect of the 

immature rearing temperature on adult survival was investigated. 

2.3 METHODS 

Development rate and immature survivorship trials were carried out at 12.5,15,20, 

25,30 and 35°C with a 24: 0 (L: D) photoperiod, for both C. nubeculosus and C. 

variipennis sonorensis. 

Development rate trials 

Rearing conditions: Eggs and larvae were reared in a metal pan (40 x 27 x5 cm) 

containing a glass fibre pad (32 x 10 x2 cm) and approximately 2.2 1 of dechlorinated 

tap water (Figure 2.1a). A filter paper disc covered with eggs was placed on the pad 

and newly hatched larvae moved into the water. Initially, 3 ml of nutrient broth (25 g 

of Oxoid No. 2 nutrient broth mixed with 11 of distilled water), 8g of grass meal and 

50 ml of larval medium from rearing pans in use in the Pirbright colony (Boorman, 

1974) were added to the water as food for the developing larvae. Subsequently, 1.5 ml 

of nutrient broth and 4g of grass meal were added three times a week. The water was 

circulated by aeration to prevent the formation of scum and topped up to the 2.2 1 level 

as required. 

Pupae developed in the pad and were freed by flooding the pan with water. After 

about 15 minutes the pupae had floated to the surface and were collected in a conical 
flask using a suction line from a small air pump. They were then washed into a sieve 

and transferred to a 100 ml beaker using a gentle stream of water. The pupae floated 

to the surface of the water and were dispensed into pupal pots using a fine brush. The 

pupal pots consisted of the bottom sections of polystyrene universal tubes filled with 
damp cotton wool and covered with a filter paper disc. Each pot was then placed into 

the bottom of a waxed card pill box, into which the adults would finally emerge 
(Figure 2.1b). 
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Figure 2.1 Culicoides rearing conditions 
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Experimental procedure: Adult Culicoides from the Pirbright colonies were allowed 

to lay eggs on filter paper discs, that had been divided into 30 sections. Each disc 

contained about 7000 eggs, that were generally evenly distributed among the sections. 

On the day the eggs were laid, the discs were placed with the eggs uppermost in the 

rearing pans at the appropriate temperature. A single filter paper disc section was then 

removed daily and observed under a microscope to determine the time required for the 

eggs to hatch. In addition, 3 ml samples of larval substrate were taken daily from six 

positions around the edge of the pan (Figure 2.1a), where the larvae tended to 

accumulate. The samples were observed under a microscope and the time required for 

the first emergence of the 2nd-4th larval instars was determined. Each larval instar 

differs markedly in size, making age characterisation straightforward. 

The pad was examined to detect the formation of the first pupa, after which time the 

pan was flooded daily. The numbers of pupae formed on each day were counted and 

up to 150 (50 x 3) were placed into pupal pots. When the adults emerged the empty 

pupal cases (exuviae) remained in the pupal pots. To determine the duration of the 

pupal stage, exuviae were therefore removed from the pupal pots on a daily basis. In 

addition, this information was used to determine the overall time required for adult 

emergence. However, for days where >150 pupae formed it was necessary to 

extrapolate adult emergence times to take account of these additional individuals. For 

example, if 50 and 100 pupae from the sample of 150 eclosed on days 44 and 45 

respectively and the total number of pupae collected was 2000 then actually 667 and 

1333 individuals would have emerged on these days. At 15 and 30°C all the C. 

variipennis sonorensis pupae produced were kept until eclosion and the number of 

males and females that emerged were counted. 

Finally, the wing lengths of 30 male and female C. nubeculosus and C. variipennis 

sonorensis that had developed at each of the temperatures were measured, from the 

basal arculus to the tip, using an eye piece graticule. Akey et al. (1978) found that the 

wing lengths of C. variipennis sonorensis were directly proportional to dry weight. 
Consequently in this study, wing length was used as a measure of body size. 

Data analysis: Development rate curves for time to mean adult emergence were 

generated for each Culicoides species by linear regression of development rates 
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(1/days) against temperature. The theoretical minimum temperature for development 

(i. e. temperature at which development can no longer occur) was estimated by 

extrapolation of the regression lines to the x-axis (i. e. where development rate = 0). 

The number of day degrees above the minimum temperature that were required for 

development was calculated from the reciprocal of the slope of the lines. The 

regression lines for the two species were compared using analysis of covariance 

(ANCOVA). 

G-tests were used to assess whether the sex ratio of C. variipennis sonorensis adults 

reared at 15 and 30°C was significantly different from 1: 1. The emergence times of 

male and female C. variipennis sonorensis reared at 15 and 30°C were compared 

using Kolmogorov-Smirnov two-sample tests. In addition, to determine whether the 

pattern of female emergence was similar at the two rearing temperatures, the 

proportion of females that emerged within the first, middle and last third of the total 

emergence time were compared between the temperatures using a 1-way analysis of 

variance (ANOVA) with binomial errors (for proportion data; Crawley, 1993). 

Wing lengths of male and female C. nubeculosus and C. variipennis sonorensis were 

regressed as linear functions of temperature. The regression lines for males and 
females of the same species were compared using ANCOVA. 

Immature survivorship trials 

Rearing conditions: Eggs and larvae were reared in a small metal pan (21 x 16 x5 cm) 

containing a glass fibre pad (16 x6x2 cm) and 700 ml of dechlorinated tap water. 
Initially, 1 ml of nutrient broth, 4g of grass meal and 17 ml of larval medium from 

rearing pans in use in the Pirbright colony were added. Subsequently, 0.5 ml of 
nutrient broth and 2g of grass meal were added three days a week. The rest of the 

rearing procedure was the same as for the development rate trials. 

Experimental procedure: One thousand eggs, obtained from the Pirbright colony on 
the day they were laid, were counted on to a filter paper disc and placed into a rearing 
pan at the appropriate temperature. The numbers of pupae and adults that 
subsequently developed were counted. Three replicates were carried out at each 
temperature. 
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Egg hatching trials were also conducted. One hundred eggs were counted on to a filter 

paper disc and then placed into a rearing pan at the appropriate temperature. The 

number of eggs that had hatched after three weeks at 12.5 and 15°C, after two weeks 

at 20 and 25°C and after one week at 30 and 35°C were counted. Five replicates were 

carried out at each temperature. 

Data analysis: The proportion of immature Culicoides that survived to adulthood was 

transformed using the arcsine square root transformation and then regressed against 

temperature. The information obtained from the trials was also used to determine egg, 
larval and pupal survivorship at the different temperatures. For example, the number 

of eggs that hatched in the 100 egg sample was extrapolated to give the number of 
larvae that would be expected to develop from 1000 eggs. Larval survivorship was 

then calculated by subtracting the number of pupae from the initial number of larvae. 

Similarly pupal survivorship was calculated by subtracting the number of adults that 

emerged from the number of pupae. 

Effect of rearing temperature on adult survival 

Culicoides variipennis sonorensis were reared to adulthood at 15,25 and 35°C (see 

rearing conditions for development rate trials). One day old adults were then allowed 
to blood-feed on an anaesthetised mouse for about one hour, according to the method 

of Boorman (1974). After this time the midges were lightly anaesthetised with carbon 
dioxide and fully engorged females were separated from midges that had not fed. 
Engorged females were placed into pill boxes (about 20 individuals/box), which had 
fine mesh tops and a moistened filter paper disc in the base to provide a site for 

oviposition, and kept at 15,25 or 35°C. Culicoides (in common with most insects) are 
susceptible to desiccation. As warmer air can hold more water vapour than air at lower 

temperatures, increasing temperature has the effect of reducing relative humidity for a 
given amount of moisture in the atmosphere. To avoid the potential confounding 
effect of differences in relative humidity at the different maintenance temperatures, 
the pill boxes were placed in exsiccators, where the humidity was maintained at 75% 
for all temperatures using a saturated solution of NaCI (Winston and Bates, 1960). 
However, it must be borne in mind that saturation deficit, a measure of the drying 

power of air based on both humidity and temperature, increases with temperature. A 
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pad of cotton wool soaked in 10% sucrose solution was placed on the mesh top of the 

pill boxes for one hour a day. This enabled the midges to feed but did not alter the 

humidity too greatly. The number of midges that died each day was then counted until 

all the midges had died and their wing lengths were measured. 

Survival analysis with exponential errors (to describe a Type II survivorship curve 

where the risk of death is independent of age) and a reciprocal link was carried out on 

the times to death, to determine the mean survival times and daily survival rates. The 

effect of rearing temperature and adult maintenance temperature on survival was 

assessed using a 2-way ANOVA. The influence of rearing temperature on wing length 

was determined using a 1-way ANOVA with normal errors. 

2.4 RESULTS 

Development rate trials 

The development times for larval, pupal and adult stages of C. nubeculosus and C. 

variipennis sonorensis reared at different temperatures are shown in Table 2.1. The 

mean time to adult emergence was greater at low temperatures and the range of time 

over which adults emerged was prolonged. 

The development rate (1/development time) of C nubeculosus (F1,4 = 200.15, p< 

0.001) and C. variipennis sonorensis (F1,4 = 131.18, p<0.001) increased linearly 

between 12.5 and 35°C (Figure 2.2). The theoretical minimum temperature for 

development was estimated to be 8.1°C for C. nubeculosus and 10.7°C for C. 

variipennis sonorensis. The total number of day degrees required above the minimum 

temperature for development was estimated to be 416.7 for C. nubeculosus and 333.3 

for C. variipennis sonorensis. Although the slopes of the development rate curves did 

not differ significantly between the two species (F1,3 = 3.9, NS), the development rate 

of C. nubeculosus was faster than that for C. variipennis sonorensis at low 

temperatures, while at high temperatures the reverse was true. 
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Table 2.1 Development times for C. nubeculosus and C. variipennis sonorensis 

reared at different temperatures. 

a. C. nubeculosus 

Temperature Day of first emergence of Day of pupal Pupal duration Day of adult 
larval stages formation (days) emergence 

°C * 131 2nd 3rd 4th range and mean ± SE range and 
instar instar instar instar mean ± SE mean ± SE 

74-131 80-140 
12.5 10 12 26 36 9.2±0.01 

97.2±0.17 106.3 ± 0.18 

41 - 83 46 - 88 
15 68 16 22 6.8±0.01 

52.0±0.07 58.8 ± 0.07 

29-42 32-45 
20 46 10 12 3.7±0.03 

32.4±0.12 36.1±0.12 

15-30 17-32 
25 2479 2.4±0.02 

20.8±0.03 233±0.07 

14-29 15-30 
30 2357 1.7±0.01 

19.5±0.03 21.1 ± 0.08 

11-16 12-17 
35 1246 1.9±0.06 

13.3±0.17 15.1±0.19 

b. C. variipennis sonorensis 

Temperature Day of first emergence of Day of pupal Pupal duration Day of adult 
larval stages formation (days) emergence 

°C 1' 2nd 3rd 41h range and mean ± SE range and instar instar instar instar mean ± SE mean ± SE 

12.5 11 12 40 53 
94-184 

9.2 ± 0.02 
102-193 

132.2 ± 0.5 142.2±0.59 

15 57 21 25 
45-106 

7.3 t 0.01 
51-113 

70.6±0.13 77.2±0.14 

20 4679 
25 - 51 

3.4 t 0.01 
28-54 

35.1 ± 0.06 383±0.06 

25 2469 16-33 
2.2 ±0.01 

18-35 
24.4±0.07 26.5 ± 0.08 

30 2357 9-24 
1.5 ±0.01 

10-25 
13.7 ± 0.02 15.2 ± 0.02 

35 1234 8-21 
1.6 t 0.02 

9-22 
12.9±0.04 14.3±0.04 

*equivalent to time required for first eggs to hatch 
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Figure 2.2 Development rates (1/mean development time) to adulthood for C. 

nubeculosus and C. variipennis sonorensis reared at different temperatures. Tm;,, is the 

theoretical minimum temperature for development and DD is the total number of day 

degrees required above Tmjn for development. 

The sex ratio of C. variipennis sonorensis reared at 15°C (G = 0.6, df = 1, NS) or 
30°C (G = 3.27, df = 1, NS) did not significantly differ from 1: 1. However, males 

tended to emerge before the females at both 15 (Kolmogorov-Smirnov two-sample 

test, p<0.001) and 30°C (Kolmogorov-Smirnov two-sample test, p<0.001) (Figure 

2.3). In addition, the pattern of female emergence differed between the two rearing 
temperatures (Table 2.2). For example, a significantly' greater proportion of females 

emerged within the first third of the total emergence time at rearing temperatures of 
30°C compared to 15°C, while for the middle third of the total emergence time, the 

reverse was true (Table 2.2). 
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Table 2.2 Results of statistical analyses comparing the proportion of female C. 

variipennis sonorensis that emerged within the first, middle and last third of the total 

emergence time, at rearing temperatures of 15 and 30°C. 

Proportion of females to emerge 
Emergence (days of emergence) x2 

time df =1 15°C 30°C 

0.12 0.35 370.3 
First third 

(days 51-71) (days 10-14) p<0.001 

0.86 0.63 325.2 Middle third (days 72-92) (days 15-19) p<0.001 

Last third 
0.02 0.02 2.6 

(days 93-113) (days 20-25) NS 

The wing length of male (F1,4 = 12.38, p<0.05) and female (F1,4 = 13.83, p<0.05) C. 

nubeculosus and male (F1,4 = 705.42, p<0.001) and female (F1,4 = 220.37, p<0.001) 
C. variipennis sonorensis was inversely related to rearing temperature between 12.5 

and 35°C (Figure 2.4). Female wing lengths were larger than male wing lengths for C. 

variipennis sonorensis (F1,9 = 120.63, p<0.001) and C. nubeculosus, although for the 
latter this difference was not significant (F1,9 = 3.52, NS). The impact of rearing 

temperature on wing length did not vary significantly between male and female C. 

nubeculosus (F1,8 = 0.01, NS) or male and female C. variipennis sonorensis (F1,8 = 
3.87, NS). 
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Figure 2.4 Mean wing lengths of male (open squares) and female (solid squares) C. 

nubeculosus and male (open diamond) and female (solid diamonds) C. variipennis 

sonorensis reared at different temperatures. 

Immature survivorship 

The survivorship of both Culicoides species to adulthood was affected by rearing 

temperature (Figure 2.5). Maximum survivorship to adulthood occurred at rearing 
temperatures of 25 and 30°C for C. nubeculosus and at 25°C for C. variipennis 

sonorensis. At low rearing temperatures (12.5-15°C) survivorship of C. variipennis 

sonorensis was severely reduced compared to that for C. nubeculosus, while at very 
high temperatures (35°C) the reverse was true. The equations describing the 

relationship between the arcsine square root of the proportion of immatures surviving 
to adulthood (y) and temperature (x) are: 
C. nubeculosus 

12.5-30°C: y= 1.189x + 17.238, r2 = 0.79, F1,13 =48.42, p<0.001 
30-35°C: y= -8.01 lx + 292.798 
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In general, immature mortality was greatest in the egg and larval stages (Figure 2.6). 
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Figure 2.7 Effect of rearing temperature on recruitment of adults from the immature 

stages for C. nubeculosus and C. variipennis sonorensis. The recruitment index is the 

product of the mean development rate and the mean proportion of immatures that 

survive to adulthood. Recruitment of adults is greatest at temperatures where the 

development rate is fast and immature survivorship is high (i. e. recruitment index 

values >0.02) and is limited at temperatures where either one or both of these factors 

are reduced. 

Optimum rearing temperature 

To establish the optimum rearing temperature for each species, in terms of recruitment 

of adults, the effect of rearing temperature on both the development rate and 

survivorship to adulthood were considered. A recruitment index, based on the product 

of the mean development rate and the mean proportion of immatures that survive to 

adulthood, was calculated at each rearing temperature for C. nubeculosus and C. 

variipennis sonorensis (Figure 2.7). The recruitment index was greatest at rearing 
temperatures of 25 to 30°C for C. nubeculosus and at 25 to 35°C for C. variipennis 
sonorensis (Figure 2.7). These temperature ranges were therefore considered to be the 

optimum rearing temperatures. At temperatures below the optimum, recruitment was 
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limited due to the extended development time and poor survivorship, while at 

temperatures above the optimum recruitment was limited due to low survivorship. 

Effect of rearing temperature on adult survival 

Survival of female C. variipennis sonorensis was not affected by rearing temperature 

(x2 = 1.62, df = 2, NS), but was significantly influenced by the adult maintenance 

temperature (x2 = 107.5, df = 2, p<0.001) (Table 2.3). The interaction between 

rearing temperature and adult maintenance temperature was not significant (x2 = 6.22, 

df = 4, NS). Wing length was affected by rearing temperature (F2,311 = 1053.4, p< 

0.01) and females reared at low temperatures were larger than those reared at higher 

temperatures (Table 2.3). 

2.5 DISCUSSION 

Culicoides nubeculosus development from egg to adult can occur at temperatures 

ranging from =8.1°C to 35°C, while C. variipennis sonorensis development can occur 

from =10.7 to at least 35°C and probably at even higher temperatures. The optimum 

temperature range for development was 25-30°C for C. nubeculosus and 25-35°C for 

C. variipennis sonorensis. Temperatures experienced during the immature stages did 

not affect survival of adult C. variipennis sonorensis, when adults were maintained at 

a range of temperatures. 

Rearing temperature affected both immature survivorship and the development rate of 

C. nubeculosus and C. variipennis sonorensis. For example, at the optimum rearing 

temperatures, survivorship to adulthood was high and the mean development time and 

range of time over which adults emerged was short. Large numbers of adults are 

therefore likely to be rapidly recruited at these temperatures. Since outbreaks of BT 

and AHS tend to occur when vectors are abundant (Mellor and Boorman, 1995; 

Mellor, 1996), risk of an outbreak (following the introduction of virus) will be high at 

times of year when conditions are optimal for development. 

Low temperatures adversely affected development in both species with survivorship to 

the adult stage reduced and the mean time and range of adult emergence prolonged. In 

addition, the emergence of females with regards to the total emergence time was 
delayed at low rearing temperatures. Since BTV and AHSV are transmitted by female 
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Culicoides, this delay combined with the above factors could result in a reduced rate 

of viral transmission at low temperatures. Nevertheless, it was essential to establish 

the minimum temperature for development in both species, as this can be used to 

assess whether development and hence adult Culicoides could occur throughout the 

year in a particular region. This is important because the continual presence of adults 

could result in the viruses becoming endemic (Mellor, 1993,1994). 

Although the optimum rearing temperatures for C. nubeculosus and C. variipennis 

sonorensis overlapped, the two species responded differently to low and very high 

temperatures. For example, at low temperatures (<_15°C) C. nubeculosus was more 

successful than C. variipennis sonorensis, with comparatively shorter developmental 

periods and more individuals surviving to adulthood. However at 35°C, the reverse 

was true and while 35°C was within the optimum range for C. variipennis sonorensis 

development, immature survivorship of C. nubeculosus was severely reduced. 

The number of adults in a population will be influenced by the survival rate of adult 

midges, as well as recruitment from the developing immatures. Small body size has 

been correlated with a reduction in survival in other insect species (e. g. McCabe and 
Partridge, 1997). However, although rearing temperature affected Culicoides body 

size, it did not significantly influence adult survival when adult C. variipennis 

sonorensis were maintained at a range of temperatures. Consequently, the main 
impact of rearing temperature on population size appears to be through its effects on 
the development rate and survivorship of the immatures. However, population size 

may also be indirectly influenced by factors not considered here. For example, given 

that body size and temperature are inversely related, further trials are necessary to 

determine whether rearing temperature affects the desiccation tolerance of adult 

midges (as smaller individuals may be more susceptible to desiccation) or fecundity 

(smaller females lay fewer eggs per batch; Akey et al., 1978). 

The present trials involving C. variipennis sonorensis overcame some of the 
drawbacks associated with previous work in this area. In the trials by Vaughan and 
Turner (1987), C. variipennis australis (= C. variipennis sonorensis; Tabachnick, 
1996) larvae were nutritionally stressed, resulting in prolonged development and poor 
immature survivorship. Here, I reared the larvae under optimum conditions. In 
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addition, Mullens and Rutz (1983) reported the effect of temperature on the 

development of a New York population of C. variipennis. However, since C. 

variipennis sonorensis does not occur as far north as New York, it is likely that this 

was another subspecies within the C. variipennis complex, C. variipennis variipennis. 

Culicoides variipennis variipennis is found in cooler northern regions of the USA and 

hence is not as good a model as C. variipennis sonorensis for establishing the 

influence of temperature on development of C. imicola. 

If the impact of temperature on C. imicola is similar to that for C. variipennis 

sonorensis, it is likely that C. imicola will be most successful in the warmer areas of 

its range in Europe and at times of year when conditions are hottest. There is also 

concern that the spread of C. imicola across Europe may not be complete (e. g. 

Rawlings et al., 1998) and that if conditions should warm (as predicted by climate 

change scenarios; Intergovernmental Panel on Climate Change, 1996) this extension 

in range could be even greater. Currently there is no evidence to suggest that C. 

imicola diapause as fourth instar larvae during winter (Mellor, pers. comm. ), which is 

the typical strategy of Palearctic Culicoides species. If this is the case, then the 

distribution of C. imicola is likely to be restricted to areas where the temperature is 

above the lower developmental threshold for the majority of the year. Consequently, 

the minimum temperature for development established in the model species C. 

variipennis sonorensis may provide some insight into the areas where C. imicola 

could occur, both currently and as conditions warm. This is investigated further in 

Chapter 6. 

In addition to changes in the distribution of C. imicola, climate change could affect 

the number of generations that Culicoides species undergo in a year. For example, 

according to the method proposed by Yamamura and Kiritani (1998) for estimating 
the potential increase in number of generations under global warming in temperate 

zones, C. nubeculosus and C. variipennis sonorensis would be able to complete at 
least one more generation per year. An increase in the number of generations would 
result in a greater number of adult Culicoides vectors and hence enhance the 
likelihood of a BT or AHS epidemic, following the introduction of virus. In addition, 
due to the predicted extension in the development season (i. e. spring is expected to 

arrive earlier and autumn later; Climate Change Impacts Review Group, 1996; Menzel 
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and Fabian, 1999) Culicoides development and hence adult vectors could potentially 

occur over a greater proportion of the year. This could result in areas of Europe 

experiencing outbreaks of BT or AHS over several successive seasons, where 

previously outbreaks would have finished during winter of the first season. 

In this chapter I have investigated the effect of temperature on the development of C. 

nubeculosus and C. variipennis sonorensis. By using these species as models for the 

vector species that occur in Europe (e. g. C. obsoletus, C. pulicaris and C. imicola), the 

information established in this study may be used to help identify periods of risk for 

virus transmission in Europe. In addition, this study has provided useful insight to 

some of the ways in which climate change may affect Culicoides vectors and their 

potential for virus transmission. 
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CHAPTER 3: EFFECT OF TEMPERATURE ON THE TRANSMISSION OF ORBIVIRUSES BY 

CULICOIDES BmNG MIDGES (DIPTERA: CERATOPOGONIDAE): THE C. VARIIPENNIS 

SONORENSIS MODEL. 

3.1 ABSTRACT 

The influence of temperature on the likelihood of Culicoides variipennis sonorensis 

transmitting African horse sickness virus (AHSV) serotypes 4 and 6, bluetongue virus 

(BTV) serotypes 10 and 16 and epizootic haemorrhagic disease virus (EHDV) 

serotype 1 was investigated. Extrinsic incubation periods (EIP), vector competence 

and vector survival were determined at 15,20,25 and 30°C. The impact of moisture 

levels on vector survival was also investigated by maintaining adults at 40,75 and 

85% relative humidity at each temperature. Higher temperatures were associated with 

a shorter EIP for all virus serotypes except AHSV6 to which C. variipennis sonorensis 

was refractory, increased vector competence for AHSV4 and EHDV1, but not for 

BTV 10 or BTV16, and a reduction in vector survival. Humidity interacted with 

temperature in influencing vector survival, such that at low temperatures lower 

humidity (40 and 75% RH) was detrimental for survival, while at high temperatures 

high humidity (85% RH) was detrimental. In general, the transmission potential of C. 

variipennis sonorensis for AHSV4, EHDV 1, BTV 10 and BTV16 was greater at 

higher temperatures, because although vector survival declined, this was more than 

compensated for by the accompanying decrease in EIP. 

3.2 INTRODUCTION 

Culicoides biting midges are the principal vectors of nine species of orbivirus 
(Calisher and Mertens, 1998), including African horse sickness virus (AHSV), which 
infects equids, and bluetongue virus (BTV) and epizootic haemorrhagic disease virus 
(EHDV), which infect ruminants. The ability of Culicoides to transmit these viruses is 

dependent on the species and genotype of the midge and is also influenced by 

environmental factors such as temperature. While progress has been made in 
identifying the genetic mechanisms controlling the competence of Culicoides to 

orbiviruses (Tabachnick, 1991), information concerning the quantitative effects of 
temperature on virus transmission is lacking. However, in order to identify regions of 
the World that are likely to be at risk of disease and enable the more effective 
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targeting of control measures, it is essential to have a better understanding of the 

relationship between temperature and virus transmission by Culicoides. 

Temperature can affect transmission by influencing the proportion of midges that can 

transmit virus. This is due to its impact on vector competence, vector survival, the 

extrinsic incubation period (EIP; development time of the virus in the vector) and the 

blood-feeding interval. The relationship between these factors can be described as 

follows: 

M= Vp° (equation 1) 

where M= proportion of midges that could take at least one virus transmissive blood- 

meal (after initially ingesting a viraemic blood-meal), V= proportion of competent 

midges, p= daily survival rate and n= days to first virus transmissive blood-meal (i. e. 

first blood-meal after the EIP). 

Although temperature has been shown to affect each of these factors, their precise 

relationships have not been defined. For example, with regards to vector competence, 

Wellby et al. (1996) and Mullens et al. (1995) found that the infection rate of C. 

variipennis sonorensis with AHSV9 or BTV11 was greater at Z20°C, compared to 

incubation temperatures of <_15°C. However, even if a midge is susceptible to 

infection (i. e. virus can replicate in the midgut), it does not necessarily mean that it 

will be competent to transmit virus, since some midges possess a midgut escape 

barrier (where virus is restricted to the midgut cells; Jennings and Mellor, 1987) or a 

dissemination barrier (where virus is unable to infect secondary target organs; Fu et 

al., 1999). In the case of vector survival, Hunt et al. (1989) and Wellby et al. (1996) 

found that high temperatures reduced survivorship of C. ' variipennis sonorensis, but 

the effect of temperature on the daily survival rate was not determined. In addition, the 

relationship between temperature and duration of the EIP has not been directly 

quantified, although Wellby et al. (1996) and Mullens et al. (1995) found that AHSV9 

and BTV11 replicated more rapidly in C. variipennis sonorensis at higher 

temperatures. The effect of temperature on the interval between blood-meals in C. 

variipennis sonorensis is the only relationship that has been established (Mullens and 
Holbrook, 1991). 
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The present study was therefore carried out to determine the influence of temperature 

on vector competence, vector survival and the duration of the EIP, in genetically 

competent Culicoides infected with AHSV, BTV or EHDV. In addition, since 9 

AHSV serotypes, 24 BTV serotypes and 8 EHDV serotypes are currently recognised, 

it was necessary to establish whether the impact of temperature was consistent among 

serotypes. The influence of humidity on vector survivorship was also investigated, as 

due to their small size, adult midges are likely to be susceptible to desiccation, 

especially at higher temperatures (Bursell, 1964). The effect of temperature and 

humidity on the above parameters was determined in C. variipennis sonorensis, which 

is a competent vector of AHSV in the laboratory (Boorman et al., 1975; Mellor et al., 

1975) and the major vector of BTV (Mellor, 1990) and EHDV (Foster et al., 1977) in 

North America. This information was then used to quantify the effect of temperature 

and humidity on transmission of these orbiviruses and establish the range of 

conditions over which transmission could occur. 

3.3 METHODS 

Extrinsic incubation period and vector competence 

Viruses 

Culicoides variipennis sonorensis were infected with five orbivirus serotypes (Table 

3.1). Serotypes within a virus species were chosen on the basis of their differing 

distributions. All the viruses were originally obtained from Onderstepoort Veterinary 

Institute, South Africa. They were passaged as shown in Table 3.1 and stored as tissue 

culture supernatants at 4°C until required. 

Insects 

Two to three day old adult C. variipennis sonorensis, from the PIRB-s-3 strain 
(Wellby et al., 1996) of the Pirbright colony (Boorman, 1974), were allowed to feed 

on a blood-virus suspension consisting of 1 ml of heparinised horse blood mixed with 
1 ml of virus solution. The blood-virus suspension contained a high titre of virus (5.7- 

6.5 loglo TCID50/ml) to overcome the `threshold of infection' (concentration of virus 

required to initiate infection in a genetically competent midge). Horse blood was used 

as the source of blood to increase the likelihood of midges becoming infected with the 

viruses (Marchi et al., 1995; Burroughs, unpub. obs. ). 
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Table 3.1 Orbivirus serotypes used to infect C. variipennis sonorensis. 

MB = suckling mouse brain, BHK = baby hamster kidney cells and E= embryonated 

hen eggs. The numbers by the acronyms refer to how many times the virus has been 

passaged in that system (e. g. MB3 BHK4 =3 passages in a suckling mouse brain 

followed by 4 passages in baby hamster kidney cells). 

Serotype Passage history Distribution 

Iberia 1987 - 1990, 
AHSV4 MB3 BHK4 Africa 

AHSV6 MB3 BHK4 Africa 

Iberia 1956 - 1960, 
BTV10 E1 BHK7 Africa, Asia, N. America 

BTV16 E2 BHK7 Africa, Asia, Australia 

N. America, S. America, 
EHDV1 BHK11 Caribbean, Australia 

Adult midges were blood-fed using the artificial feeding apparatus and method 

described by Mellor et al. (1974), except that a stretched parafilm membrane was used 

in place of a1 day old chick skin membrane (Figure 3.1). They were allowed to feed 

for about 30 minutes, after which time they were lightly anaesthetised with carbon 

dioxide and the fully engorged females were separated from individuals that had not 

fed. ' Engorged females were then placed into waxed cardboard pill boxes with fine 

mesh tops (about 100 individuals/box). A pad of cotton wool soaked in 10% sucrose 

solution medicated with 100 µg/ml of penicillin/streptomycin was placed on the mesh 

and replaced daily. This provided a source of energy, while the presence of antibiotics 

in the sucrose solution has been shown to prolong survival of midges (Bellis et al., 

1994). A moistened filter paper disc in the base of the pill box provided sites for 

oviposition. 

Virus-fed females were then kept at a constant temperature of either 15,20,25 or 
30°C. At 15°C and 20°C, samples consisting of 4 pools of 5 females (to determine the 
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Water out __ 

Water in 
__ 

Glass c Glass finger containing 
water heated to 38°C 

Parafilm membrane 
Blood-vin', 
suspension 

Netting over top 
of pill box 

Pill box containing 
adult Culicoides 

XXXXXX 
Female Culicoides 
feed through netting 
and parafilm membrane 

Pupal pot 

Figure 3.1 Blood-feeding apparatus. Feeding units consist of an outer glass cylinder 

and an inner glass ̀ finger'. A parafilm membrane is stretched across the bottom of the 

glass cylinder and the blood-virus suspension is added. Water, heated to 38°C, 

circulates through the glass finger and warms the blood-virus suspension. Female 

Culicoides blood-feed through the parafilm membrane. 
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effect of temperature on virus development) and 10 individual females (to determine 

the duration of the EIP and the proportion of females that were capable of viral 

transmission) were taken immediately after the blood-meal and then every 2 days for 

28 days. After this time at 15°C, surviving females were transferred to 25°C for a 

further 10 days, with samples taken on days 29-31,35 and 38. At 25 and 30°C, 

samples were taken immediately after the blood-meal and then daily for 10 days. In 

addition, at 25°C samples were taken on days 12 and 15. The midge samples were 

placed into 1.5 ml Eppendorf tubes and kept at -70°C until they could be assayed for 

virus. 

Virus titration assay 

Midge samples were ground up using motor-driven 1.5 ml polypropylene pestles 

(Anachem), in 0.5 ml of Glasgow Minimum Essential Medium (MEM; Life 

Technologies) which contained 200 pg/ml of penicillin/streptomycin and 2.5 µg/ml of 

fungizone. Two hundred microlitres of the midge suspensions was then diluted 1 in 10 

in the MEM. Five additional ten-fold dilutions for the pools of midges and two 

additional ten-fold dilutions for the individual midges were then prepared. 

Virus titrations were carried out in 96-well microtitre plates. Each well contained a 

monolayer of BHK-21 cells and 100 µl of MEM supplemented with 2% foetal calf 

serum, 100 pg/ml of penicillin/streptomycin and 2.5 pg/ml of fungizone. One hundred 

microlitres of each midge dilution was inoculated onto either each of six microtitre 

plate wells (pooled midges) or onto five wells (individual midges). The inoculated 

microtitre plates were subsequently incubated at 37°C in a carbon dioxide incubator. 

After five days the plates were observed microscopically for cytopathic effects which 

were used as a positive indicator of the presence of virus. Viral titres were then 

calculated using a method adapted from Spearman (1908) and Kärber (1931) and 

expressed as TCID5015 midges for pools of midges (Appendix 1.1) or TCID50/midge 

for individuals (Appendix 1.2). The assay could detect viral titres between 1.367 and 
7.2 loglo TCID50/5 midges and between 1.4 and 4.2 log10 TCID50/midge. Samples 

with viral titres <1.367 log10 TCID50/5 midges or 1.4 logio TCID5dmidge were classed 

as negative. 

58 



Temperature and transmission of orbiviruses 

Extrinsic incubation period 

Jennings and Mellor (1987) found that individual C. variipennis sonorensis containing 

>2.5 loglo TCID50 of BTV4, after 8 days incubation at 25°C, regularly transmitted 

virus. Hence, the EIP was defined as the interval between the viraemic blood-meal 

and when the virus had replicated to a titre of >2.5 loglo TCID50/midge. However, 

since some individuals imbibed >2.5 logio TCID50 of virus with the blood-meal, it was 

necessary to distinguish midges in which virus had replicated from those which had 

recently ingested virus. Typically, after ingestion of a viraemic blood-meal, the viral 

titre per midge decreases during an ̀ eclipse phase' but then rises as the virus replicates 

in the vector. Hence individuals with >2.5 loglo TCID50 of virus were classed as 

potential transmitters once the eclipse phase had passed. 

The time required for the first female to complete the EIP (i. e. minimum EIP) was 

determined at each temperature, for the different viruses. In addition, the median time 

required for females to complete the EIP was calculated at each temperature, for the 

different viruses. To do this, the time-cumulative proportion of females with viral titre 

>2.5 logio TCIDso was transformed using probit analysis (used to linearise cumulative 

curves) and plotted against the logarithm of days. Linear regression was then used to 

fit the best straight line and from this an estimate of the median EIP was obtained 

(Figure 3.2). 

Extrinsic incubation rates (EIR; reciprocal of the EIP), when the first female and 50% 

of females were capable of virus transmission, were then calculated and regressed as 
linear functions of temperature. The theoretical minimum temperature for virus 
development (in the first female and 50% of females) was estimated by extrapolation 

of the regression lines to the x-axis and the number of day degrees above the 

minimum temperature required for virus development was estimated as the reciprocal 

of the slope of the lines (Figure 3.2). Finally, the regression lines for the first and 
median transmission rates were compared among the viruses by analysis of covariance 
(ANCOVA). 
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Figure 3.2 Procedure for calculating the median extrinsic incubation period and 

theoretical minimum temperature for virus development. 

1. Calculation of time-cumulative proportion of midges with viral titre >2.5 loglo TCID50 and probit 

transformation. In the example (which is based on the AHSV4 data at 25°C; page 68) midges from day 

4 onwards (after the eclipse phase) were classed as potential transmitters and 10 individual midges were 

sampled on each test day. 

Day y 
midges with viral 

titre >2.51oglo TCID50 / 
total midges tested 

Time-cumulative 
proportion of midges 
with viral titre 

0 log10 TCID50 

Probit transformation of 
time-cumulative 

proportion of midges 
with viral titre >2.5 

TCID5o 

4 2/10 2/51 = 0.0392 3.2401 

5 4/10 6/51 = 0.1176 3.8132 

6 7/10 13/51 = 0.2549 4.3409 

7 5/10 18/51 = 0.3529 4.6226 

8 10/10 28/51 = 0.5490 5.1231 

9 6/10 34/51 = 0.6667 5.4307 

10 8/10 42/51 = 0.8235 5.9289 

12 3/10 45/51 = 0.8824 6.1868 

15 6/10 51/51 = 0.9902* 7.3339 

Total 51/90 - - 

*To include extreme data points (i. e. 100% value for females with viral titre >2.5 logio TCID50) the proportion has 
been recalculated as 1-1/(2n), where n is the total number of females with viral titre >2.5 loglo TCID5o (i. e. 51). 

2. Probit of time-cumulative proportion of potential transmitters is regressed against the logarithm of 
days. An estimate of the median EIP is then obtained from the regression line. Steps I and 2 are 
repeated at each temperature for the different viruses. 

8 

I Regression line equation   
7 y=ax+b 

6 ./' 
.r 

'° 5 -------------------- --ýý 
Using the data from step 1 
equation of line would be: 
y=6.8865x -1.0362 

4 

3 

Probit value for 50% 
(i. e. median) is 5 

Median EIP = 0.877 log 10 days 

= 7.5 days 

2 
0.5 0.6 0.7 0.8 0.9 1.0 

Log10 days 

1.1 1.2 
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Figure 3.2 continued. 

3. Calculation of extrinsic incubation rates (1/extrinsic incubation period) 

Temperature °C Estimated median EIP* EIR 

15 17.9 0.0559 

20 14.4 0.0694 

25 7.5 0.1333 

30 5.7 0.1754 

* or minimum EIP 

4. Extrinsic incubation rates are regressed against temperature. The theoretical minimum 
temperature for virus development (T,,;,, ) and the number of day degrees (DD) required above 
Tn; o for virus development are estimated from the regression line. The duration of the EIP at 
constant or varying temperatures between 15 and 30°C can then be estimated using the 
equation EIP = DD /T- Tmjn, where T is the ambient temperature. 

0. a 
Using the data from step 3 
equation of line would be:   

y=0.0084x - 0.0816 

W 
0.15 Tmin = 9.7°C 

co DD = 119.0 

0 
CIS 

0.1 
T i i db 

m1n s est mate y Regression line is fitted 
"ý, extrapolation of the to the data points 

regression line to  y=ax+b 
the x-axis   0.05 

1/a gives the number of DD 
required above Tmin for 
virus development 

0 
5 10 15 20 25 30 

Temperature °C 
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Vector competence 

To establish the impact of temperature on the vector competence of C. variipennis 

sonorensis for the different viruses, the proportion of individual midges with a viral 

titre >2.5 loglo TCID50 on each test day after the eclipse phase was transformed using 

the logit transformation and regressed against temperature. Binomial errors were used 

in the regression analysis to account for the use of proportion data (Crawley, 1993). 

Since there is no exact theory for the distribution of deviances in an analysis with non- 

normal error variances, X2 approximations were used. However, in a number of cases, 

data were overdispersed. A heterogeneity factor HF (HF = Pearson x2/df; Crawley, 

1993) corrects for overdispersion and F-tests rather than x2 tests must then be used. 

The regression lines for the different viruses were compared by ANCOVA. 

In addition, a one-way analysis of variance (ANOVA) with binomial errors was used 

to compare the proportion of females that could transmit virus at 25°C after initially 

being held at 15°C with the proportion of competent females that had been held 

entirely at 15 or 25°C. 

Survival of adult C. variipennis sonorensis 

One to two day old adult C. variipennis sonorensis were allowed to feed on a blood- 

virus suspension consisting of heparinised horse blood mixed with AHSV4. Groups of 
100 blood-fed females were then placed into pill boxes and subsequently kept in 

exsiccators at 40,75 or 85% relative humidity, at 15,20,25 or 30°C. Forty percent 
humidity was achieved using saturated solutions of CaC12.6H20 at 15°C and NaI at 
20-30°C, while NaCl and KCl maintained the humidity at 75 and 85% respectively, 

across the temperature range (Winston and Bates, 1960). Midges were provided with a 

pad of cotton wool soaked in 10% sucrose solution medicated with antibiotics for one 
hour a day. This enabled the midges to feed but did not alter the humidity too greatly. 
The number of midges that died each day was then counted until all the midges had 

died. 

Survival analysis with exponential errors (to describe a Type II survivorship curve 
where the risk of death is independent of age) and a reciprocal link was carried out on 
the times to death, to determine both the mean survival times and the daily survival 
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rates at each temperature/humidity combination. The effect of temperature and relative 

humidity on survival was then assessed using ANCOVA. The saturation deficit 

(Appendix 2), which provides a measure of the drying power of air based on both 

relative humidity and temperature, was also calculated for each temperature/humidity 

combination. Times to death were then regressed against temperature and saturation 

deficit. 

3.4 RESULTS 

Virus development 

The geometric mean AHSV titres in pools of C. variipennis sonorensis incubated at 

different temperatures are shown in Figure 3.3. In general, at each temperature, the 

mean AHSV4 titre declined after the blood-meal (eclipse phase) but then subsequently 

increased over time. This pattern is typical of arbovirus development in a vector and is 

related to the initial digestion and/or excretion of virus particles as well as the 

uncoating of virus particles during infection of the midgut cells (core particles are less 

infectious for BHK-21 cells than intact virus particles; Mertens et al., 1996), followed 

by replication of the virus in the midgut cells and secondary target organs. However 

temperature did affect both the rate of AHSV4 development and the extent of viral 

replication. For example, at 25°C replicating virus was detected by day 4 and viral 

titres of =5 loglo TCID5015 midges were subsequently observed, whereas at 15°C, 

replication of AHSV4 was not detected until day 10 and viral titres of only =3-4 logjo 

TCID50/5 midges were subsequently obtained. 

AHSV6 development was limited regardless of the incubation temperature (Figure 

3.3). At 15°C, AHSV6 was not detected between days 10 and 35, while at 25°C the 

maximum titre obtained after the eclipse phase was only 1.6 loglo TCID50/5 midges 

which is not even sufficient for an individual midge to be capable of viral 
transmission. Thus since the PIRB-s-3 strain of C. variipennis sonorensis appeared to 
be refractory to this strain of AHSV6, the trials at 20 and 30°C were not completed. 

BTV 10 and BTV16 developed more rapidly at the higher temperatures, although the 

results at 25°C are difficult to interpret due to considerable variation in the viral titres 
(Figure 3.4). EHDV 1 development was also affected by temperature and at 15°C the 
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Table 3.2 Estimated duration of the EIP for different orbivirus serotypes in C. 

variipennis sonorensis maintained at different temperatures. Minimum and median 

EIPs refer to the time interval between ingestion of the viraemic blood-meal and when 

the first and 50% of competent females respectively were capable of viral 

transmission. 

EIP - Days 

Temperature °C AHSV4 

Minimum Median 

BTV10 BTV16 EHDV1 

Minimum Median Minimum Median Minimum Median 

15 14 17.9 26 26 16 19.9 -- 

20 6 14.4 8 13.0 10 20.2 6 18.2 

25 4 7.5 15 15 4 7.2 2 5.7 

30 4 5.7 3 7.0 2 4.8 2 4.8 

virus was unable to replicate until midges were subsequently transferred to 25°C 

(Figure 3.5). 

Extrinsic incubation period 

The proportion of individual C. variipennis sonorensis with a viral titre >2.5 logio 

TCID50/midge at the different temperatures is shown in Figure 3.6. Using these data, 

the minimum and median EIPs for the different viruses at each temperature were 

estimated (Table 3.2). The minimum and median EIPs for BTV 10 at 15°C were the 

same, as only one individual at this temperature was potentially capable of 

transmitting the virus. This was also the case at 25°C. In addition, the minimum and 

median EIPs for AHSV6 at 15 and 25°C could not be estimated, as none of the midges 
developed a viral titre >2.5 loglo TCID50/midge. 

The rate of development (i. e. EIR) of AHSV4, BTV 10, BTV16 and EHDV 1 in C. 

variipennis sonorensis increased linearly between 15 and 30°C (Figure 3.7). The 

theoretical minimum temperature for virus development in the first female varied 
from 7.6°C for AHSV4 to 14.7°C for BTV16, while in 50% of females it varied from 

9.1 °C for BTV 10 to 15.1 °C for EHDV 1. The number of day degrees required for 
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development of AHSV4 and BTV 10 in C. variipennis sonorensis was substantially 

greater than that required for the development of BTV 16 or EHDV 1 (Figure 3.7). The 

regression lines describing the relationship between temperature and the EIR for virus 

development in the first female (F3,8 = 2.41, NS) or 50% of females (F3, g = 2.99, NS) 

did not differ significantly among the serotypes. 

Vector competence 

The vector competence of C. variipennis sonorensis for AHSV4 (F1,34 = 15.82, p< 

0.01) and EHDVl (F1,29 = 6.50, p<0.05) increased linearly between 15 and 30°C 

(Figure 3.8). However, vector competence for BTV 10 (F1,20 = 0.01, NS) and BTV16 

(F1,33 = 0.69, NS) was not significantly affected by these temperatures (Figure 3.8). 

The effect of temperature on vector competence differed significantly among the virus 

species (F1,119 = 3.93, p<0.05). 

When C. variipennis sonorensis were transferred to 25°C after initially being held at 

15°C (Figure 3.6), the proportion of midges that were capable of transmitting AHSV4 

increased significantly (x2 = 40.47, df = 1, p<0.001), to a level similar to that for 

midges which had been held continuously at 25°C. Although transfer to 25°C 

increased the susceptibility of midges to EHDV 1, the proportion of midges able to 

transmit EHDV 1 was still greater when they were held continuously at 25°C (x2 = 

671.6, df = 2, p<0.001). The proportion of midges able to transmit BTV10 was not 

significantly affected by these temperatures (x2 = 0.53, df = 2, NS), while for BTV 16 

the proportion of competent midges was lower at 15/25°C compared to 15 and 25°C 

(x2 = 14.26, df = 1, p<0.001). 

Survival of adult C. variipennis sonorensis 

Survival of adult C. variipennis sonorensis (Table 3.3) decreased significantly as 

temperature increased from 15 to 30°C (x2 = 201.7, df = 1, p<0.001), but was not 

significantly affected by saturation deficit (x2 = 0.97, df = 1, NS) or relative humidity 

()? = 0.03, df = 2, NS). However, the interaction between relative humidity and 

temperature was significant (x2 = 15.6, df = 1, p<0.001), so that at low temperatures 

survival was greater at high relative humidity (85% RH) compared to lower relative 
humidities (40 and 75% RH), but at high temperatures the impact of relative humidity 
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Table 3.3 Survival of blood-fed female C. variipennis sonorensis at different 

temperatures and relative humidities. Females were 1-2 days old at the time of the 

blood-meal, which consisted of horse blood mixed with AHSV4. One hundred 

females were kept at each temperature/humidity combination. 

Temperature % Relative Saturation Survival range Mean survival Survival rate / 
°C humidity deficit mbar days days +SE -SE day* 

40 10.3 2-52 27.3 3.1 2.5 0.96 

15 75 4.3 1-46 27.5 1.4 1.3 0.96 

85 2.6 4-57 33.2 1.4 1.3 0.97 

40 14.1 2-33 15.6 1.8 1.5 0.94 

20 75 5.9 2-31 18.8 0.8 0.7 0.95 

85 3.5 1-41 20.5 0.8 0.8 0.95 

40 19.1 2-26 14.4 1.5 1.3 0.93 

25 75 8.0 2-23 13.4 0.6 0.6 0.93 

85 4.8 2-18 10.9 0.6 0.5 0.91 

40 25.7 2-20 11.9 1.3 1.1 0.92 

30 75 10.7 2-15 10.2 0.5 0.5 0.91 

85 6.4 2-12 7.1 0.4 0.4 0.87 

*daily survival rate is e-(Unean survival) 

was reversed (Table 3.3). The following regression equations describe the effect of 
temperature and relative humidity on survival at temperatures between 15 and 30°C: 

Low humidity (40 and 75% RH): 

y=0.0036x - 0.0 165, r2=0.38, x2=86.6, df= 1, p<0.001 
High humidity (85% RH): 

y= 0.0064x - 0.0681, r2=0.60, x2= 130.7, df= 1, p <0.001 

where x is temperature and y is the hazard function (i. e. instantaneous death rate). 

Virus transmission 

Using equation 1 (page 54), the proportion of female C. variipennis sonorensis that 
could take at least one virus transmissive blood-meal for the different orbivirus 
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serotypes at 15-30°C was calculated. The equations derived for the impact of 

temperature on 1. duration of the minimum and median EIP (Figure 3.7; EIR = 1/EIP) 

2. vector competence (Figure 3.8; logit = ln(p/1-p) where p is the proportion of 

competent midges; Crawley, 1993) and 3. survival rates at low (40 and 75% RH) and 

high humidities (85% RH) (page 72; hazard function is -ln(daily survival rate)) were 

used for the calculations. The blood-feeding interval (to determine the number of days 

to the first blood-meal after the minimum or median EIP) was calculated using the 

equation y= -1.98 + 0.07217x + 2516.65/x2, where x is temperature and y is the mean 

number of days to oviposition (Mullens and Holbrook, 1991), since Culicoides are 

capable of taking their next blood-meal on the same day as oviposition. The lowest 

temperature at which females could take a virus transmissive blood-meal was 

considered to be the minimum temperature for virus transmission, while the optimum 

temperature for virus transmission was considered to be the temperature at which the 

greatest proportion of females could take a virus transmissive blood-meal. 

The proportion of female C. variipennis sonorensis that could take at least one virus 

transmissive blood-meal increased between 15 and 30°C for AHSV4, EHDV1, 

BTV 10 and BTV16, although the magnitude of the increase was dependent on the 

virus (Figure 3.9). Estimates of the minimum and optimum temperatures for 

transmission of these viruses by C. variipennis sonorensis are shown in Table 3.4. 

The lowest temperature at which female C. variipennis sonorensis could take a virus 
transmissive blood-meal was largely determined by the relationship between adult 

survival and the duration of the EIP. For example, while EHDV1 development in 50% 

of females only ceases at 15.1°C, transmission below 17°C is unlikely because few 

females can survive the lengthy EIP (>36 days) at temperatures <17°C. However, for 

some of the viruses (e. g. AHSV4 and BTV 10 and BTV16 for calculations involving 

the median EIP) the minimum temperature for virus transmission could only be 

estimated to occur within a range of temperatures (Table 3.4). Thus although the 

theoretical minimum temperature for development of these viruses was estimated to 
be <15°C, adult survival could only be calculated at 15-30°C. The optimum 
temperature for virus transmission varied between 27 and 30°C depending on the 

virus (Table 3.4), although if trials had been carried out at >30°C, it is possible that 

the optimum could be even higher. Trials at higher temperatures are also necessary to 
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Table 3.4 Minimum and optimum temperatures for transmission of different orbivirus 

species and serotypes by C. variipennis sonorensis. 

Serotype EIP Minimum °C Optimum °C 

AHSV4 min 7.6-15 28-30+ 

median 9.7-15 29-30+ 

BTV 10 min 15 27-30+ 

median 9.1-15 27-30+ 

BTV16 min 16 27-30+ 

median 12.6-15 27-30+ 

EHDV 1 min 15 28-30+ 

median 17 Z30 

determine the upper temperature limit for virus transmission, although this is likely to 

be dependent on vector survival, as virus development is rapid at high temperatures. 

3.5 DISCUSSION 

The impact of temperature on the duration of the EIP, vector competence and vector 

survival greatly affected the transmission potential of C. variipennis sonorensis, for 

those orbivirus species and serotypes to which it was genetically susceptible (i. e. 

AHSV4, EHDV 1, BTV 10 and BTV16). High temperatures favoured transmission of 

these viruses, with a greater proportion of midges capable of taking at least one virus 

transmissive blood-meal at 27-30°C, than at temperatures S1 5°C. However, the extent 

to which temperature could affect the transmission potential of C. variipennis 

sonorensis was dependent on the orbivirus species and serotype. 

Temperature and the EIP: The duration of the EIP for AHSV4, EHDV1, BTV 10 and 

BTV16 in C. variipennis sonorensis was shorter at higher temperatures. 

Consequently, female C. variipennis sonorensis would be able to transmit virus 

sooner when conditions are warm. However, despite the consistent affect of 
temperature on the rate of virus development, the time required for development did 

vary among the virus species and serotypes. For example, the number of day degrees 
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required for development of AHSV4 and BTV 10 in C. variipennis sonorensis was 

substantially greater than that required for either BTV 16 or EHDV 1. 

Although virus development was limited at low temperatures, virus titres in pools of 

midges increased when C. variipennis sonorensis were transferred to 25°C, after 

previously being incubated for 28 days at 15°C. In addition, a greater proportion of 

individual midges were capable of transmitting AHSV4 and EHDV 1 after transfer to 

25°C. Thus it appears that virus can persist in C. variipennis sonorensis for extensive 

periods at low temperatures and that subsequent exposure to warm temperatures can 

result in some midges developing full virus infections. This phenomenon has also 

been observed in C. variipennis sonorensis infected with BTV I1 (Mullens et al., 

1995) and AHSV9 (Wellby et al., 1996), while in other arbovirus/vector systems, it 

has been shown that virus remains in the midgut cells of vectors incubated at low 

temperatures, but then spreads to secondary target organs following exposure to 

higher temperatures (e. g. Shichijo et al., 1972). 

Temperature and vector competence: The effect of temperature on the vector 

competence of C. variipennis sonorensis (i. e. the proportion of midges with 

competent genotypes that develop competent phenotypes) varied greatly among the 

viruses. Thus while temperature did not affect the vector competence of midges for 

BTV 10 and BTV16, the ability of C. variipennis sonorensis to transmit both AHSV4 

and EHDV 1 increased between 15 and 30°C, although EHDV 1 showed a greater 

response. Earlier studies also indicate that the effect of temperature on vector 

competence can be variable, for example, the infection rate of C. variipennis 

sonorensis with BTV 11 was similar at temperatures between 21 and 32°C (Mullens et 

al., 1995), while the infection rate with AHSV9 increased with temperature (Wellby et 

al., 1996). 

The PIRB-s-3 strain of C. variipennis sonorensis appeared to be refractory to AHSV6 

Since virus was not detected (even at low level) in the majority of individuals 

sampled, it is likely that these C. variipennis sonorensis possessed a midgut infection 

barrier to AHSV6. In addition, when AHSV6 was inoculated directly into the 
haemocoel, 100% of midges developed viral titres of >2.5 logto TCID50/midge (data 
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not shown), further indicating that the barrier to infection was associated with the 

midgut. 

Temperature and survival: The daily survival rate of adult C. variipennis sonorensis 

decreased with increasing temperature and on average midges lived three times longer 

at 15°C than at 30°C. Mellor et al. (2000) speculated that reduced survival at higher 

temperatures may be due to desiccation rather than temperature per se, since 

saturation deficit increases with temperature. However in this study, higher mortality 

at elevated temperatures appeared to be attributable to temperature, as saturation 

deficit (ranging from 2.6 to 25.7 mbar) did not directly influence adult survival. 

However, relative humidity did affect adult survival at the different temperatures, such 

that at low temperatures low humidity was detrimental for survival, while at high 

temperatures high humidity was detrimental. At low temperatures, the reduction in 

longevity of C. variipennis sonorensis at low humidities may have been due to 

excessive water loss. In addition, since the drying power of air increases with 

temperature, it was expected that the detrimental effect of low humidity would be 

even greater at high temperatures. Indeed, Murray (1991) demonstrated that the 

detrimental impact of low humidity on C. brevitarsis survival increased with 

temperature. The finding that low humidity actually increased survival at high 

temperatures was therefore surprising. However, it is possible that at the higher 

humidities, conditions were too moist, hindering the ability of midges to eliminate 

excess metabolic water by evaporation. There was no evidence to suggest that fungi or 

other pathogens (which thrive in warm moist conditions) were the cause of the 

increased mortality. 

Temperature and transmission: The transmission potential of C. variipennis 

sonorensis for the different viruses was largely dependent on the relationship between 

adult survival and the time to the first virus transmissive blood-meal. Hence high 

temperatures (e. g. 27-30°C) favoured transmission of AHSV4, EHDV 1, BTVIO and 
BTV16, because although adult longevity was reduced the duration of the EIP was 

sufficiently fast that a greater proportion of midges could survive to transmit virus. In 

addition, the impact of high temperatures on transmission of AHSV4 and EHDV 1 was 

enhanced by the increased vector competence of C. variipennis sonorensis for these 
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serotypes. In contrast, at cooler temperatures (e. g. 15-17°C), adult longevity was 

extended but the EIP was disproportionately prolonged, so that few midges could 

survive the incubation period, while the vector competence of C. variipennis 

sonorensis for all the viruses was low. At temperatures below the theoretical 

minimum for virus development (e. g. 7.6-15.1°C depending on the virus) viral 

transmission even at low level is impossible. However, if temperatures subsequently 

increase, latent virus can replicate, increasing the potential for transmission. Indeed, 

Wellby et al. (1996) suggested that the persistence of virus in the vector for long 

periods at low temperatures and the subsequent resumption of viral development on 

exposure to warm conditions may provide an overwintering mechanism for these 

viruses, since vector longevity is also extended at low temperatures (e. g. up to 90 days 

in some cases; Mellor et al., 2000). 

While the findings of this study indicate that temperature and humidity can greatly 

affect the transmission of orbiviruses by C. variipennis sonorensis, it must be borne in 

mind that midges were maintained at constant temperatures and relative humidities. In 

the field midges will experience a range of temperatures and instead of being 

restricted to a particular humidity which may be detrimental for survival, they can 

move to habitats with more suitable microclimates. In addition, the impact of 

temperature and humidity on the transmission potential of the PIRB-s-3 strain of C. 

variipennis sonorensis for different orbiviruses may not be representative of the 

impact on other C. variipennis sonorensis populations, since different populations are 
likely to vary in their susceptibility to viruses (e. g. Jones and Foster, 1978) and in their 

response to temperature. For these reasons, the specific effects of temperature and 
humidity on the transmission potential of other Culicoides species may also be 

difficult to predict. However, experiments such as this provide a useful insight into the 

impact that temperature and humidity can have on transmission of orbiviruses by 

Culicoides and can be used to broadly assess the risk of orbivirus transmission 

occurring within a particular region. 
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CHAPTER 4: EFFECT OF TEMPERATURE ON THE TRANSMISSION OF AFRICAN HORSE 

SICKNESS VIRUS SEROTYPE 8 BY CULICOIDES IMICOLA (DIPTERA: CERATOPOGONIDAE). 

4.1 ABsTRACr 

The effect of temperature on the transmission of African horse sickness virus serotype 

8 (AHSV8) by Culicoides imicola was investigated. The vector competence of C. 

imicola for AHSV8 did not vary significantly at incubation temperatures of 15,18,26 

or 30°C and overall only 2% of C. imicola were considered capable of transmitting 

virus. However, the development time of AHSV8 in C. imicola was affected by 

temperature and the duration of the extrinsic incubation period was shorter at higher 

temperatures. The minimum temperature for AHSV8 development in C. imicola was 

estimated to be 9.9°C. These findings can be used to identify regions of Europe that 

have suitable conditions for AHSV transmission, both currently and if conditions 

should warm with climate change. 

4.2 INTRODUCTION 

African horse sickness is a non-contagious, infectious, arthropod-borne disease of 

equids and in susceptible horse populations mortality rates may be as high as 95% 

(Coetzer and Erasmus, 1994). The disease is caused by African horse sickness virus 
(AHSV), a dsRNA virus (Reoviridae: Orbivirus), of which there are nine 
internationally recognised serotypes. AHSV is enzootic in parts of sub-Saharan Africa 

but sporadic outbreaks have also occurred in southern Europe, for example in Spain 
during 1966 (Diaz Montilla and Panos Marti, 1968) and in Spain and Portugal between 

1987 and 1990 (Rodriguez et al., 1992). 

The only confirmed field vector of AHSV is Culicoides imicola (Diptera: 

Ceratopogonidae). This species is principally Afro-Asian, but in 1982 it was recorded 
for the first time in Europe, from Cordoba in southern Spain (Mellor et al., 1983). It is 

now known to occur across most of south-western Iberia, up to 41°17'N in Portugal 

and 40°N in Spain (Rawlings et al., 1997). It has also been recorded from the Greek 
islands of Lesbos (Boorman and Wilkinson, 1983), Rhodes (Boorman, 1986), Chios, 
Kos, Samos (Mellor, pers. comm. ) and Evia (Patakakkis, unpub. obs. ) and was 
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recently discovered on mainland Greece, in the provinces of Chaldithiki, Larisa and 

Magnisia (Patakakkis, unpub. obs. ). 

The ability of Culicoides populations to transmit AHSV is affected by environmental 

factors, such as temperature (Chapter 3). Consequently, to identify the regions of 

Europe where AHSV transmission could occur, both currently and if conditions should 

warm (as predicted by climate change scenarios; Intergovernmental Panel on Climate 

Change, 1996), it is essential to quantify the effect of temperature on AHSV 

transmission by C. imicola. However, C. imicola has proved impossible to rear in the 

laboratory and earlier work into the effect of temperature on AHSV transmission has 

therefore focused on C. variipennis sonorensis, which has been colonised (Boorman, 

1974) and is also susceptible to AHSV (Boorman et al., 1975; Mellor et al., 1975). 

These studies showed that AHSV was unable to replicate in C. variipennis sonorensis 

at temperatures below p10°C, while within favourable temperature limits, the duration 

of the extrinsic incubation period (EIP; the development time of the virus in the vector) 

was inversely related to temperature (Wellby et al., 1996; Chapter 3). Furthermore, a 

greater proportion of midges could survive to transmit virus at higher temperatures 

(e. g. 28-30°C), because although longevity of C. variipennis sonorensis was reduced 

at high temperatures, this was more than compensated for by the shorter EIP (Chapter 

3). In addition, the vector competence of this C. variipennis sonorensis population for 

AHSV4 (i. e. proportion of midges capable of transmitting virus) increased linearly with 

temperature (Chapter 3). 

While these studies have provided useful insights into the influence of temperature on 

AHSV transmission by Culicoides, it is essential to confirm these findings in C. 

imicola. Recently a method was established for infecting wild-caught C. imicola with 

AHSV (Venter et al., 1991; Venter et al., in press) and consequently the influence of 

temperature on AHSV transmission by C. imicola can now be studied. The present 

study was therefore carried out to determine the effect of temperature on vector 

competence and duration of the EIP in C. imicola infected with AHSV, as well as to 

establish the minimum temperature for AHSV replication. 
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4.3 METHODS 

Virus 

Of the 4 AHSV serotypes that C. imicola have so far been infected with in laboratory 

trials, serotype 8 has the highest infection prevalence, with 28% of midges infected 

after 10 days at 23.5°C (Venter et al., 1991; Venter et al., in press). Consequently, to 

avoid having to use unreasonably large numbers of C. imicola to determine the effect 

of temperature on AHSV replication, AHSV8 was used in this study. 

To maximise the likelihood that C. imicola would ingest sufficient virus to initiate 

infection, it was essential to use a high titre of virus. To produce a high viral titre, 

AHSV8 was initially propagated in monolayers of baby hamster kidney (BHK-21) 

cells. These cells were grown in 175 cm2 flasks and overlaid with 25 ml of Glasgow 

Minimum Essential Medium (MEM; Life Technologies). When the cells displayed 

100% cytopathic effect (CPE) (after =3 days at 37°C), the virus suspension was 

removed and centrifuged at 1500g for 5 minutes. The pelleted cells were then 

resuspended in 5 ml of the supernatant and kept overnight at 70°C, while the 

remaining supernatant was held at 4°C. The cell suspension was subsequently thawed 

slowly, resulting in the release of virus from the cells. This was then mixed with 20 ml 

of the original supernatant and centrifuged at 1500g for 5 minutes. The resulting 

supernatant was then separated from the cell pellet and kept at 4°C until required for 

the feeding trials. 

Insects 

Adult Culicoides were collected nightly at the Onderstepoort Veterinary Institute 

(OVI; 25°39'S, 28°11'E), South Africa, between January and March 1999. Culicoides 

imicola is the predominant Culicoides species at this site and occurs in large numbers 
during the summer (Venter et al., 1996). Culicoides were caught near a horse stable, 
using 220V down-draught suction light-traps equipped with 8W UV-light tubes and 
collected into 500 ml plastic beakers. Mosquito netting was placed around the traps to 
prevent the capture of larger insects and crumpled paper towel was placed in the 
beakers prior to catching to provide shelter for the trapped midges from the down- 
draught of the trap. 
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The catches were collected each morning before sunrise and emptied into black boxes 

(450 x 330 x 280 mm). A white translucent funnel was placed over a hole on one side 

of the box. Adult midges moved through the funnel towards the light and were 

collected in 300 ml unwaxed cardboard cups with fine mesh tops. Adults were then 

kept at 23.5°C (for a minimum of two days) until blood-feeding and provided with a 

10% sucrose solution medicated with antibiotics (penicillin/streptomycin). The midges 

were deprived of sugar solution 24 hours before the blood-meal to maximise their 

feeding rate. 

Feeding technique 

Adults were blood-fed through a 1-day-old chicken skin membrane using the artificial 

feeding apparatus described by Venter et al. (1991; Figure 4.1). Blood-meals were 

taken from a suspension consisting of 9 ml of defibrinated horse blood mixed with 1 ml 

of AHSV8 solution, producing a final titre of =6 loglo TCIDsdmL Up to 10 batches of 

Culicoides per day were fed on the blood-virus suspension and to confirm that there 

was no loss of infectivity during the day, 0.5 ml blood samples were taken immediately 

before and after the feeding process. These samples were stored in 1.5 ml Eppendorf 

tubes at -70°C until virus isolation could be carried out. 

During feeding the midges were kept at 23.5°C, 50-70% relative humidity and 1% 

daylight, while the blood-virus suspension was maintained at 37°C. Midges were 

allowed to feed for 30-45 minutes, after which time they were immobilised by placing 
them at -10°C for a few minutes and then transferred to a refrigerated chill table. Fully 

engorged females were placed into 300 ml unwaxed cardboard cups with fine mesh 

tops (about 100 individuals/cup). A pad of cotton wool soaked in 10% sucrose 

solution medicated with antibiotics was placed on the mesh and replaced daily. 

Virus-fed females were then kept at constant temperatures of either 15,18,26 or 
30°C. Samples consisting of 4 pools of 25 C. imicola (to determine the effect of 
temperature on virus development) and 100 individual C. imicola (to determine the 

proportion of C. imicola that were capable of viral transmission and the duration of the 
EIP) were taken immediately after the blood-meal and then every 5 days for 25 days at 
15°C, every 4 days for 20 days at 18°C, and every 2 days for 10 days at 26 and 
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Figure 4.1 Blood-feeding apparatus. The feeding chamber consists of a plastic pill 

bottle, with the top replaced by gauze and the bottom replaced by a chick skin 

membrane. Adult Culicoides are placed into the feeding chamber, which is then placed 

into a second wider pill bottle, containing the blood-virus suspension and a magnetic 

stirrer. The two containers are placed into a water bath (an aluminium foil dish) on a 

magnetic heater/stirrer. The blood-virus suspension is heated to 37°C and is mixed 

slowly with the magnetic stirrer. Female Culicoides blood-feed through the chick skin 

membrane. (Adapted from Venter et al., 1991). 
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30°C. Midges were sorted to species level on the chill table and the C. imicola samples 

were placed into 1.5 ml Eppendorf tubes and stored at 70°C until virus isolation 

could be carried out. 

Virus titration assay 

Midge samples were ground up using motor-driven 1.5 ml polypropylene pestles 

(Anachem), in lml of MEM that contained 200 µg/ml of penicillin/streptomycin and 

2.5 µg/ml of fungizone. In the case of pools of C. imicola, 200 µl of the suspension 

was subsequently diluted 1 in 10 in MEM and passed through a 200 nm syringe filter 

(Supor' AcrodiscR 32; Gelman Sciences) to remove bacteria and fungi, but not 

AHSV8 virions which are -70 nm in diameter. Three additional ten-fold dilutions were 

then prepared. Dilutions of individual C. imicola were not prepared at this stage, since 

it was necessary to first establish which individuals contained virus, as only a small 

proportion were likely to be infected. 

Assays were carried out in 96-well microtitre plates. Each well contained a monolayer 

of BHK-21 cells and 100 tl of MEM supplemented with 2% foetal calf serum, 100 

p g/m1 of penicillin/streptomycin and 2.5 µg/ml of fungizone. One hundred microlitres 

of each midge suspension and dilution (in the case of pools of C. imicola) were 
inoculated onto each of 4 microtitre plate wells. The inoculated microtitre plates were 

subsequently incubated at 37°C in a carbon dioxide incubator. After five days the 

plates were observed microscopically for CPE which was used as a positive indicator 

of the presence of virus. If virus was detected in individual C. imicola, 2 ten-fold 

dilutions of the original suspension were prepared and inoculated on to BHK-21 cells, 

as described above. Viral titres were calculated using a method adapted from 

Spearman (1908) and Kärber (1931) and expressed as TCID5o/25 midges for pools of 
C. imicola (Appendix 1.3) or TCIDso/midge for individual C. imicola (Appendix 1.4). 

The assay could detect viral titres of 0.75-5.5 loglo TCIDso/25 midges and 0.75-3.5 

loglo TCID5o/midge. Samples with <0.75 logio TCID5o were classed as negative. 

Seven ten-fold dilutions of the blood samples were also prepared and 100 µl of each 
dilution was inoculated onto each of 6 microtitre plate wells containing BHK-21 cells. 
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Viral titres of 1.67-8.5 logio TCID5o/ml could be detected and were determined as 

described above. 

Field controls 

AHSV and other orbiviruses (e. g. bluetongue virus; BTV) are endemic in the 

Onderstepoort area. Hence it is possible that C. imicola females, which had taken a 

blood-meal prior to being trapped, may have already been infected with a virus. To 

assess the likelihood that the virus detected in C. imicola was acquired from the 

feeding trials and not from the field, it was necessary to determine the prevalence of 

field infections in the OVI C. imicola population. To do this, collections of Culicoides 

were made in phosphate buffered saline with 0.5% Savlon and parous C. imicola 

females (i. e. females that have taken a blood meal and laid at least one batch of eggs), 
identified by the presence of a red pigment in the abdomen (Dyce, 1969), were 

subsequently sorted into 15 pools of 100. These samples were then processed for 

virological assay as described for the pools of 25 midges. 

Vector competence 

Initial conditions: To ensure that individual C. imicola tested at the different 

temperatures started with the same initial conditions, that is the proportion of C. 

imicola that ingested virus from the blood-virus suspension and the titre of virus they 
ingested, it was necessary to compare the values for these traits after feeding (day 0 

values). The proportion data were analysed using a 1-way analysis of variance 
(ANOVA) with binomial errors (for proportion data; Crawley, 1993). The log 

transformed viral titres in the positive midges were compared using a 1-way ANOVA 

with normal errors. 

Infection rate: This refers to the proportion of C. imicola which were susceptible to 
infection with AHSV8 (i. e. proportion of midges in which virus could replicate in the 

midgut). Typically after ingestion of a viraemic blood-meal, the viral titre per midge 
declines during an `eclipse phase', but subsequently rises as the virus starts replicating 
in the midgut. Hence to determine the effect of temperature on the infection rate, the 

proportion of C. imicola that tested positive for AHSV8 (Le. titre 20.75 logto 
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TCID5o1midge) from the end of the eclipse phase onwards at each temperature were 

compared using a 1-way ANOVA with binomial errors. 

Vector competence: The proportion of Culicoides that are capable of virus 

transmission may be lower than the proportion that can become infected, as some 

individuals may possess a midgut escape barrier (where virus is restricted to the 

midgut; Jennings and Mellor, 1987) or a dissemination barrier (where virus is unable to 

infect secondary target organs; Fu et al., 1999). Culicoides imicola with a AHSV8 

titre ?2 loglo TCID5o/midge after the eclipse phase were considered to be capable of 

transmitting virus. This value was taken as Jennings and Mellor (1987) found that only 

individual C. variipennis sonorensis (from the Pirbright colony; Boorman, 1974) 

containing >_2.5 logo TCIDso of BTV (a virus closely related to AHSV) transmitted 

" virus. Since C. imicola are smaller than C. variipennis sonorensis it is unlikely that 

virus will have to replicate to such a high titre before they will be capable of 

transmission. Culicoides imicola females from the OVI population (mean wing length 

0.97 mm) are 2/3 size of C. variipennis sonorensis females from the Pirbright colony 

(mean wing length 1.45 mm). Consequently, if we assume that the volume of a C. 

imicola female is only 8/27 of that for a C. variipennis sonorensis female, it is 

reasonable to infer that virus will only have to replicate to a titre of 2 loglo 

TCID5oImidge (2.5 logio = 316; 316 x 8/27 = 94; 94 =2 logio) before C. imicola are 

capable of transmission. Hence to determine the effect of temperature on vector 

competence, the proportion of C. imicola with AHSV8 titre z2 logio TCID5oImidge 

from the end of the eclipse phase onwards at each temperature were compared using a 
1-way ANOVA with binomial errors. 

Extrinsic incubation period 

The EIP was defined as the interval between the viracmic blood-meal and when 
AHSV8 had replicated to a titre of z2 logio TCID5o/midge. The median time required 
for C. imicola to complete the EIP was calculated at each temperature. To do this the 

time-cumulative proportion of individual C. imicola with viral titre z2 logto 

TCIDSolmidge (after the eclipse phase) at each temperature was transformed using 

probit analysis (used to linearise cumulative curves) and plotted against the logarithm 
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of days. Linear regression was then used to fit the best straight line and from this an 

estimate of the median EIP was obtained (see Figure 3.2). 

Extrinsic incubation rates (EIR; reciprocal of the EIP) were then calculated and 

regressed as a linear function of temperature. The theoretical minimum temperature for 

AHSV8 replication in C. imicola could then be estimated by extrapolation of the 

regression line to the x-axis and the number of day degrees above the minimum 

temperature that were required for AHSV8 development was estimated as the 

reciprocal of the slope of the line (see Figure 3.2). 

4.4 RESULTS 

Virus development 

The geometric mean titre of AHSV8 in pools of C. imicola incubated at different 

temperatures are shown in Figure 4.2. At each temperature, the mean AHSV8 titre 

declined after the blood-meal (eclipse phase), but subsequently increased over time. 

This pattern is typical of arbovirus development in a vector and is related to initial 

digestion and/or excretion of virus particles as well as the uncoating of virus particles 
during infection of the midgut cells (core particles are less infectious for BHK-21 cells 
than intact virus particles; Mertens et al., 1996), followed by replication of virus in the 

midgut cells and secondary target organs. However, temperature affected both the rate 
of AHSV8 development and the extent of replication. For example, at 26°C replicating 

virus was detected by day 6 and AHSV8 titres of -3.4 loglo TCID5o/25 midges were 
subsequently observed, whereas at 15°C replication of AHSV8 was not detected until 
day 15 and viral titres of only 2.4-2.7 logo TCID50/25 midges were subsequently 

obtained. 

Vector competence 

The proportion of individual C. imicola that ingested AHSV8 from the blood-virus 

suspension (x2 = 1.98, df = 3, NS) and the titre of AHSV8 ingested by these midges 
(F3,46 = 0.06, NS) did not differ significantly among the incubation temperatures (day 0 

values; Figure 4.3, blue and red lines). Overall 42% of C. imicola ingested detectable 
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Figure 4.2 Geometric mean titre of African horse sickness virus serotype 8 in pools 

of 25 C. imicola incubated at different temperatures (based on 4 pools of 25 midges 

per test day). 

titres of AHSV8 from the blood-virus suspension and the geometric mean viral titre 

ingested by these midges was 1.6 1og, o TCID5o/midge. 

The end of the eclipse phase was signalled by an increase in the geometric mean titre 

per positive midge after the initial decline in titre and was considered to be day 10 at 

15°C, day 8 at 18°C, day 6 at 26°C and day 4 at 30°C (Figure 4.3, red lines). The 

proportion of C. imicola with AHSV8 titre ? 0.75 logo TCID5o/midge from the end of 

the eclipse phase onwards (i. e. infection rate) was significantly higher at 26°C than at 

the other temperatures (x2 = 115.9, df = 1, p<0.01) (Figure 4.3, blue lines). However, 

temperature did not significantly affect the vector competence of C. imicola for 

AHSV8 (x2 = 4.64, df = 3, NS) and overall only 2% of C. imicola from the eclipse 

phase onwards had a viral titre >_2 logto TCID5oImidge (Figure 4.3, green lines). 
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Figure 4.3 Effect of temperature on the proportion of individual C. imicola that tested 

positive for AHSV8 (i. e. vial titre ? 0.75 loglo TCIDSo/midge; blue lines) and on the 

proportion of C. imicola with AHSV8 titre >_2 loglo TCID50/midge (green lines) at 

intervals after the infected blood-meal (based on 100 individuals per test day). Also 

shown are the geometric mean AHSV8 titres per positive midge (red lines). 

Extrinsic incubation period 

The estimated duration of the median EIPs for AHSV8 in C. imicola maintained at the 

different temperatures are shown in Table 4.1. The rate of AHSV8 development 

(1/EIP) in C. imicola increased with temperature (Figure 4.4). The theoretical 

minimum temperature for AHSV8 development was estimated to be 9.9°C and 78.7 

day degrees were required above this threshold temperature for virus development. 
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Table 4.1 Estimated duration of the median EIP for AHSV8 in C. imicola maintained 

at different temperatures. 

Temperature 15°C 18°C 26°C 30°C 

EIP - days 12.4 10.0 6.4 3.4 

Figure 4.4 Extrinsic incubation rates (1/median extrinsic incubation period) for 

AHSV8 in C. imicola maintained at different temperatures. T.,;,, is the theoretical 

minimum temperature for virus development and DD is the total number of day 

degrees required above T for virus development. 
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Blood-meal and field controls 

AHSV8 titres detected in the blood-virus suspension before and after feeding did not 

differ significantly (F1,2o= 3.6, NS). Virus was not detected in any of the pools of field 

collected parous C. imicola. 

4.5 DISCUSSION 

The vector competence of the Onderstepoort C. imicola females for AHSV8 did not 

vary significantly among the incubation temperatures and overall only 2% of females 

tested were considered capable of transmitting virus. However AHSV8 development in 

C. imicola was affected by temperature and the duration of the EIP was shorter at 

higher temperatures. The minimum temperature for AHSV8 development in C. imicola 

was estimated to be 9.9°C. 

There are two potential confounding factors in this study. First, the wild-caught C. 

imicola may have been infected with virus in the field. However, since virus was not 

detected in the control pools of parous C. imicola, it is unlikely that virus recovered 

from the laboratory-infected midges was acquired from the field. Second, the minimum 

viral titre a midge must contain before it is considered capable of virus transmission has 

yet to be established for C. imicola. We considered that C. imicola with viral titres Z2 

loglo TCID50Imidge were likely to transmit virus. However, although this figure is 

hypothetical, it does appear to be reasonable when considered in terms of the range of 

AHSV titres observed in C. imicola. Additionally, in other Culicoides vector species, 

not all individuals develop a large enough viral titre for them to be considered as 

competent vectors. For example, Fu et al. (1999) found that only the small proportion 

of C. variipennis sonorensis with the largest viral titres would ever be capable of 

transmitting BTV. Nevertheless, it is critical both for future work and for the 

interpretation of data such as that presented here, that a better understanding of the 

threshold titre for C. imicola vector competence is obtained. 

It is perhaps surprising that temperature did not affect the vector competence of C. 

imicola for AHSV8, since vector competence increased linearly between 15 and 30°C 

in trials involving C. variipennis sonorensis and AHSV4 (Chapter 3). However, the 

effect of temperature on vector competence of Culicoides vectors for orbiviruses 
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seems to be variable, and in the same trials it was found that temperature had no effect 

on the proportion of C. variipennis sonorensis capable of transmitting BTV 10 or 

BTV16. Therefore, even though temperature did not influence the vector competence 

of C. imicola for AHSV8, it does not necessarily follow that this will also be the case 

with other AHSV serotypes or virus species. In addition, other populations of C. 

imicola may vary in their susceptibility to AHSV8 and in their response to 

temperature. 

The low vector competence of the Onderstepoort C. imicola females for AHSV8 may 

have been partially due to the fact that less than half of the midges tested after feeding 

had actually ingested detectable titres of virus. However, given that the blood-virus 

suspension contained an AHSV8 concentration of 6 logio TCID50Iml and that the 

blood-meal size for C. imicola is between 0.03 and 0.07 µl (Hamblin, pers. comm. ), 

individual midges should have ingested between 1.5 and 1.8 logo TCID50 of virus, 

which is well within the range of the assay system used in this study. There are two 

possible reasons why some midges did not ingest virus at a detectable level. First, the 

midges may have ingested smaller blood-meals (i. e. <0.03 µl), reducing their chances 

of acquiring virus. Second, the virus particles may not have been homogeneously 

distributed throughout the blood-virus suspension, resulting in some midges only 
ingesting blood. In C. variipennis sonorensis, a species which takes in up to three 
times the volume of blood per blood-meal as C. imicola (Mellor, 1990), all females 

that feed on a blood-virus suspension with a viral titre of 6 logo TCIDso/ml are found 

to have ingested virus. This result suggests that the size of the blood-meal may be an 
under-rated aspect of vector competence. 

The fact that not all blood-engorged females were found to have ingested AHSV8 

suggests that we may be underestimating the proportion of competent C. imicola in the 

population. If we include all the females tested from the end of the eclipse phase 

onwards in the analysis we find that -2% were vector competent, yet some of these 
females may not have initially ingested virus. Since virus was only detected in 42% of 
females after blood-feeding, it is possible that actually -5% of the population were 
competent to transmit AHSV8. However, although the vector competence of the 
Onderstepoort C. imicola females for AHSV8 was low, regardless of which figure we 
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accept, this will be compensated for by the potentially huge population sizes of C. 

imicola. For example, Meiswinkel (1998) caught over a million C. imicola in a single 

light trap in a single night at OVI during March 1996. 

The duration of the AHSV8 EIP in C. imicola was shorter at high temperatures, 

indicating that females would be able to transmit virus sooner when conditions are 

warm. Temperature also has a similar effect on the EIP in other Culicoides/virus 

combinations that have been investigated (e. g. C. variipennis sonorensis infected with 

AHSV4, AHSV9, BTV10, BTV11, BTV16 or epizootic haemorrhagic disease virus 

serotype 1; Mullens et al., 1995; Wellby et al., 1996; Chapter 3). In addition, the 

theoretical minimum temperature for AHSV8 development in C. imicola of 9.9°C is 

similar to estimates of the minimum temperature for orbivirus development in C. 

variipennis sonorensis (Chapter 3). 

Given these findings, if the global mean temperature does increase by 2°C during the 

next 100 years (as predicted by climate change scenarios; Intergovernmental Panel on 
Climate Change, 1996), it is likely that virus replication in C. imicola will become 

more rapid and will be able to occur over greater periods of the year, especially in 

regions where low temperatures during winter currently restrict virus development. For 

example, at 16 sites within the C. imicola distribution in Iberia, virus development 

could currently occur over 7-12 months of the year (depending on the site), when the 

mean monthly temperature is z10°C (Figure 4.5a). However, with a 2°C increase in 

temperature, virus development could potentially occur over 12 months of the year at 
the majority of these sites (Figure 4.5b). In this analysis I used the mean monthly 
temperatures for each of the sites (calculated from Anon, 1972). However, it must be 

borne in mind that virus development may also occur in months in which the mean 
temperature is <10°C, but where temperatures exceed this threshold for a number of 
hours per day. Nevertheless, while these projections may be crude, they do point 
towards one of the potential impacts of climate change on AHSV transmission. 

However, to determine the effect of temperature on AHSV transmission by C. imicola, 

the impact of temperature on vector survival and the blood-feeding interval, as well as 
on vector competence and the EIP must be considered. 
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Iberia, with a mean monthly temperature _1O°C 
(i. e. number of months over which 

AHSV8 development could occur), both (a) currently and (b) if temperatures increase 

by 2°C. 
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The relationship between these factors can be described as follows: 

M_Vpn 

where M= proportion of midges that could take at least one virus transmissive blood- 

meal (after initially ingesting a viraemic blood-meal), V= proportion of competent 

midges, p= daily survival rate and n= days to first virus transmissive blood-meal (i. e. 

first blood-meal after the EIP). However, one of the limitations of working with wild- 

caught Culicoides is that their age and background are unknown. Quantifying the 

effect of temperature on vector survival is therefore difficult, since these factors may 

confound the analysis. Determining the blood-feeding interval (which is largely 

governed by the time required for the eggs to develop) at different temperatures can 

also be difficult, since wild-caught midges are reluctant to oviposit under laboratory 

conditions. 

Nevertheless while the impact of temperature on survival and blood-feeding may be 

difficult to determine, the daily survival rate and the blood-feeding interval for a 

particular field population of Culicoides can be estimated. For example, Baylis (pers. 

comm. ) found that the daily survival rate of C. imicola during March at OVI was 0.74 

and that females appear to blood-feed on average every 3 days. This information 

together with that established in this study (i. e. V=0.02 and n=6; given that the mean 

temperature at OVI during March is 23.4°C, C. imicola would complete the EIP after 
5.8 days and take their first virus transmissive blood-meal after 6 days) can then be 

used to calculate the proportion of Onderstepoort C. imicola females that could 
transmit AHSV8. Consequently, one C. imicola for every 304 C. imicola that ingest a 
blood-meal containing AHSV8 could potentially transmit virus. 

In this chapter, I have presented the results of the first study of how temperature 

influences the transmission of AHSV by the field vector C. imicola. This is a 

considerable improvement on previous work in this area, which has involved the use of 
laboratory strains of C. variipennis sonorensis. However, one of the major 
disadvantages of working with wild-caught Culicoides is that it is difficult to determine 

the effect of temperature on vector survival and the blood-feeding interval, both of 

which are important factors influencing virus transmission. Nevertheless, while it must 
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be borne in mind that different geographical populations of a species may vary in their 

susceptibility to a virus and in their response to temperature, this study has provided a 

useful insight into the impact that temperature can have on AHSV transmission by C. 

imicola and can be used to assess the risk of AHSV transmission occurring within a 

particular region, both currently and if conditions should warm with climate change. 
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CHAPTER 5: HIGHER IMMATURE REARING TEMPERATURES INDUCE VECTOR 

COMPETENCE FOR BLUETONGUE VIRUS AND AFRICAN HORSE SICKNESS VIRUS IN 

CULICOIDES NUBECULOSUS (DWTERA: CERATOPOGONIDAE). 

5.1 ASTRACT 

Culicoides nubeculosus, which is found throughout much of Europe, is generally 

considered to be incapable of transmitting bluetongue virus (BTV) and African horse 

sickness virus (AHSV). This is thought to be the result of a midgut infection barrier 

that prevents the viruses from entering the haemocoel. However, when the immature 

stages were reared at 33°C, the oral infection rate of C. nubeculosus for both BTV 

serotype 10 and AHSV serotype 4 was significantly higher than when they were 

reared at temperatures between 25 and 32°C. This marked increase in susceptibility of 

C. nubeculosus to the viruses occurred as the upper lethal rearing temperature of 35°C 

was approached. One possible explanation is that the integrity of the gut wall was 

damaged by the extreme conditions, thereby allowing the virus particles to bypass the 

gut barriers and enter the haemocoel. The critical period, when exposure to hot 

conditions could induce competence for the viruses, appeared to be during the 

development of the adult midgut epithelial cells i. e. from before the larval/pupal moult 

to the end of the pupal stage. This phenomenon could result in the occurrence of 

competent C. nubeculosus in the field, especially considering the increase in 

frequency and intensity of extremely hot days that are predicted to occur with climate 

change and could result in greater areas of Europe being at risk of BTV and AHSV. 

5.2 INTRODUCTION 

Bluetongue virus (BTV) and African horse sickness virus (AHSV) are both dsRNA 

viruses within the genus Orbivirus of the family Reoviridae and 24 BTV serotypes 

and 9 AHSV serotypes are currently recognised. BTV infects all species of ruminants, 

causing severe disease in certain breeds of sheep (MacLachlan, 1994) and in some 

species of deer (Robinson et al., 1967; Stair et al., 1968). AHSV infects equids and 
the disease is most devastating in horses, with mortality ranging from 70 to 95% 

(Coetzer and Erasmus, 1994). BTV occurs between latitudes of approximately 40°N 

to 35°S (Mellor, 1990; Mellor and Boorman, 1995; Mellor, 1996), while AHSV is 

usually confined to sub-Saharan Africa (Mellor, 1994). However, there have also been 
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sporadic outbreaks of both viruses in southern Europe (Campano Lopez and Sanchez 

Botija, 1958; Diaz Montilla and Panos Marti, 1968; Vassalos, 1980; Dragonas, 1981; 

Rodriguez et al., 1992; Anon, 1998; Anon, 1999b, c, d, e; Anon, 2000b). 

BTV and AHSV are transmitted between their respective vertebrate hosts by biting 

midges of the genus Culicoides. Although there are estimated to be 1210 species of 

Culicoides in the world (Borkent and Wirth, 1997), only 24 species have so far been 

associated with BTV (see Table 1.1), while just 6 have been linked with AHSV (see 

Table 1.2). In addition, for these putative vector species viral susceptibility may vary 

among geographical populations (Jones and Foster, 1978) and among individuals 

within a population (Jennings and Mellor, 1987). 

The ability of Culicoides to transmit orbiviruses (vector competence) is determined 

primarily at the midgut wall, which consists of a single layer of epithelial cells resting 

on a basement membrane. After taking a blood-meal from a viraemic vertebrate host, 

blood and virus are deposited into the posterior region of the insect's midgut. In 

competent individuals, virus particles attach themselves to the luminal surface of the 

gut cells, infect these cells and replicate in them. Progeny virions are then released 

through the basement membrane to the haemocoel where they infect secondary target 

organs including the salivary glands. After replication in the salivary glands, viral 

transmission can occur during subsequent biting activity (Mellor, 1990). However in 

refractory individuals, one of two barriers may exist in the midgut: a midgut infection 

barrier, where virus is unable to enter the midgut cells or a midgut escape barrier, 

where virus can replicate in the midgut cells but is unable to exit into the haemocoel 

(Jennings and Mellor, 1987). Fu et al. (1999) have also reported the existence of a 
dissemination barrier, where virus that enters the haemocoel is unable to infect 

secondary target organs. These barriers are under genetic control (Jones and Foster, 

1974; Jones and Foster, 1978; Tabachnick, 1991). 

In addition to genetic mechanisms, extrinsic factors may be involved in determining 

vector competence of haematophagous insects to arboviruses. For example, larval 

nutrition (Grimstad and Haramis, 1984; Grimstad and Walker, 1991; Zhang et al., 
1993; Nasci and Mitchell, 1994), larval rearing temperature (Kay et al., 1989; Hardy 

et al., 1990; Turell, 1993), extrinsic incubation temperature (temperature of viral 
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replication; Takahashi, 1976; Cornel et al., 1993; Turell et al., 1985; Lundström et al., 

1990; Turell and Lundström, 1990; Mullens et al., 1995; Wellby et al., 1996) and 

concurrent infection with virus and a parasite (Mellor and Boorman, 1980; Turell et 

al., 1984; Turell et al., 1987; Paulson et al., 1992; Zytoon et al., 1993; Vaughan and 

Turell, 1996a, b) have been shown to modify vector competence in various 

vector/arbovirus systems. 

In the extreme, extrinsic factors can result in genetically non-competent individuals 

becoming phenotypically competent. Such is the case with the northern European 

midge C. nubeculosus, which is generally considered to be incapable of transmitting 

BTV or AHSV due to a midgut infection barrier (Mellor et al., 1975; Mellor and 

Boorman, 1980). However, in a preliminary investigation, Mellor et al. (1998) showed 

that a 5-10°C rise in the larval rearing temperature, from the standard rearing 

temperature of 25°C, could increase the oral infection rate of C. nubeculosus for 

AHSV from <1% to >10%. They speculated that this phenotypic change could result 
from a `leaky midgut', where virus leaks directly into the haemocoel, bypassing the 

midgut barriers. Once in the haemocoel the virus can replicate and be transmitted even 
by what is normally considered to be a non-vector species. 

The implications of these findings are particularly worrying with regards to the risk of 
AHSV in Europe. The distribution of AHSV is limited to areas where there are 

competent vectors. Culicoides imicola is considered to be the principal vector in 
Europe (Mellor, 1990; Mellor, 1996) but has so far only been found in south-western 
Iberia (Rawlings et al., 1997), mainland Greece (Patakakkis, unpub. obs. ) and the 
Greek islands of Lesbos (Boorman and Wilkinson, 1983), Rhodes (Boorman, 1986), 

Chios, Kos, Samos (Mellor, pers. comm. ) and Evia (Patakakkis, unpub. obs. ). 

However, if environmental factors (i. e. high temperatures) resulted in Palearctic 

species being able to transmit virus where previously they were considered to be 

refractory, then more northerly regions of Europe will be at risk to AHSV. In addition, 
the probability of such an event actually occurring becomes more likely considering 
the increase in frequency and intensity of extremely warm days predicted to occur due 

to climate change (Houghton, 1997). 
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Given these implications, the present study was carried out to confirm the preliminary 

findings of Mellor et al. (1998) using larger sample sizes and to determine if vector 

competence for BTV in C. nubeculosus could also be induced by elevated rearing 

temperatures. With regards to the risk of disease in the more northerly parts of Europe, 

it was also important to determine the lowest rearing temperature at which vector 

competence could be induced. Furthermore, it was necessary to establish whether 

elevated rearing temperatures were required for the whole life cycle before adult C. 

nubeculosus became susceptible to the viruses or whether hot conditions for part of 

the life cycle could have the same effect. Evidence from Lepidoptera suggests that 

midgut epithelial cells present in the adults are formed a short time before the 

larval/pupal moult (Baldwin et al., 1996). If C. nubeculosus development follows a 

similar pattern then it is possible that hot conditions during the pupal stage alone 

could also result in competent adults. 

However, in order to transmit virus to vertebrate hosts, female C. nubeculosus must 

not only become susceptible to the virus but survive long enough to complete the viral 

extrinsic incubation period (EIP; development time of the virus in the vector). 
Consequently, to establish whether elevated rearing temperatures affected the survival 

of adult C. nubeculosus, longevity of adults reared at control and elevated 

temperatures was determined. Finally, preliminary trials were carried out to 

investigate whether there were morphological and ultrastructural differences between 

the midguts of C. nubeculosus reared at control and elevated temperatures which 

could account for any changes in vector competence. 

5.3 METHODS 

Insects and virus 

Freshly laid C. nubeculosus eggs from the Pirbright colony were reared through to 

adulthood at the standard rearing temperature of 25°C and at experimental 
temperatures of 30,31,32 and 33°C, using established methods (Boorman, 1974). In 

addition, to investigate the effect of hot conditions during the pupal stage alone, C. 

nubeculosus were initially reared from eggs to the beginning of the pupal stage at 
25°C. Pupae, which were 0-8 hours old, were then transferred to 33°C for the 
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remainder of the pupal stage. After eclosion, adults from all of the groups were kept at 

25°C for two days before being blood fed. 

The viruses used were BTV serotype 10 and AHSV serotype 4, both originally 

obtained from Onderstepoort Veterinary Institute, South Africa. BTV 10 had been 

passaged initially in embryonated hen eggs, followed by seven passages in baby 

hamster kidney (BHK-21) cells. AHSV4 had been passaged once in suckling mouse 

brains and four times in BHK-21 cells. The viruses were then stored as tissue culture 

supernatants at 4°C until required. 

Adult C. nubeculosus were blood fed using the artificial feeding apparatus and method 
described by Mellor et al. (1974), except that a stretched parafilm membrane was used 
in place of a 1-day-old chicken skin membrane (see Figure 3.1). Blood-meals were 

taken from a blood-virus suspension consisting of 1 ml of heparinised horse blood 

mixed with 1 ml of BTV10 or AHSV4, producing a final titre of 5.7-6.7 logio 

TCID50/ml. Horse blood was used as the source of blood to increase the likelihood of 

midges becoming infected with the viruses (Marchi et al., 1995; Burroughs, unpub. 

obs. ). Midges were allowed to feed for about 30 minutes, after which time they were 
lightly anaesthetised with carbon dioxide and the fully engorged females were 
separated from individuals which had not fed. Engorged females were then placed into 

waxed cardboard pill boxes with fine mesh tops (about 100 individuals/box) and kept 
for a further 10 days at 25°C. A pad of cotton wool soaked in 10% sucrose solution 
medicated with 100 pg/ml of penicillin/streptomycin was placed on the mesh and 
replaced daily. This provided a source of energy as well as maintaining a high 
humidity and hence increased the likelihood of midges surviving the incubation 

period. A moistened filter paper disc in the base of the pill box provided sites for 

oviposition. After 10 days, surviving midges were anaesthetised with carbon dioxide, 

placed individually into 1.5 ml Eppendorf tubes and kept at -70°C until they could be 

assayed for virus. 

Virus titration assay 

About 100 midges from each rearing temperature were ground up individually, using 
motor-driven 1.5 ml polypropylene pestles (Anachem), in 0.5 ml of Glasgow 
Minimum Essential Medium (MEM; Life Technologies) which contained 200 tg/ml 
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of penicillin/streptomycin and 2.5 µg/ml of fungizone. Two hundred microlitres of the 

individual midge' suspension was then diluted 1 in 10 in MEM and passed through a 

200 nm syringe filter (SuporR AcrodiscR 32; Gelman Sciences) to remove bacteria and 

fungi, but not the BTV or AHSV virions which are about 70 nm in diameter. Two 

additional ten-fold dilutions were then prepared. 

Virus titrations were carried out in 96-well microtitre plates. Each well contained a 

monolayer of BHK-21 cells and 100 tl of MEM supplemented with 2% foetal calf 

serum, 100 µg/ml of penicillin/streptomycin and 2.5 µg/ml of fungizone. One hundred 

microlitres of each dilution of the midge samples was then inoculated onto each of six 

microtitre plate wells. The inoculated microtitre plates were subsequently incubated at 

37°C in a carbon dioxide incubator. After five days the plates were observed 

microscopically for cytopathic effects which were used as a positive indicator of the 

presence of virus. Viral titres were then calculated using method adapted from 

Spearman (1908) and Kärber (1931) and expressed as TCID50/midge (Appendix 1.5). 

The assay could detect viral titres between 1.367 and 4.2 loglo TCID50/midge. Midges 

with <1.367 login TCID50 of virus were classed as negative. 

The proportion of C. nubeculosus that tested positive for virus (i. e. titre 21.367 loglo 

TCID5o/midge) at the different rearing temperatures and for the two viruses was 

analysed using a 2-way analysis of variance (ANOVA) with binomial errors (for 

proportion data; Crawley, 1993). In addition, the log transformed viral titres present in 

midges that tested positive for BTV and AHSV, at rearing temperatures of 33°C for 

the whole life cycle or just the pupal stage were compared using a 2-way ANOVA 

with normal errors. 

Survival of adult C. nubeculosus 

Culicoides nubeculosus were reared at 25 and 33°C. One to two day old adults were 
allowed to feed on a blood-virus suspension consisting of heparinised horse blood 

mixed with BTV 10. About 50 blood-fed females from each rearing temperature were 
placed into separate pill boxes and kept at 25°C. A saturated NaCI solution 
maintained the humidity at 75% (Winston and Bates, 1960). Midges were provided 
with a pad of cotton wool soaked in 10% sucrose solution medicated with antibiotics 
for one hour a day. This enabled the midges to feed but did not alter the humidity too 
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greatly. The number of midges that died each day was then counted until all the 

midges had died. 

Survival analysis with exponential errors (to describe a Type II survivorship curve 

where the risk of death is independent of age) and a reciprocal link was carried out on 

the times to death, to determine the mean survival times and daily survival rates. The 

effect of rearing temperature on survival was assessed using a t-test. 

Electron microscopy 

Culicoides nubeculosus were reared at 25 and 33°C. Four to five day old females were 

allowed to feed on a blood-virus suspension consisting of heparinised horse blood 

mixed with BTV 10, for 30 minutes. About one hour after the blood-meal and 

immediately prior to dissection groups of 2-3 fully-engorged females were 

chloroformed. Dissection was carried out in phosphate buffered saline under a 

dissecting microscope. Initially the legs were removed and then the head and 

prothorax were removed by cutting transversely between the prothorax and 

mesothorax. The terminal region of the abdomen was also removed by cutting 

transversely between the seventh and eighth abdominal segments. Finally the wings 

were removed. The aim was to leave the midgut intact inside the body, removing the 

head and tip of the abdomen so that the fixative could subsequently penetrate through 

the gut tissue. A preliminary trial had found that dissecting the midgut from the body 

disrupted the midgut cells, particularly in the case of midges reared at 33°C. 

In addition, 4-5 day old adults, which had been reared at 25 and 33°C, but which had 

not been blood fed were dissected. The procedure was'the same as above, except the 

abdomen was cut between the fifth and sixth abdominal segments, because when the 

gut is not distended with blood, it fills a smaller portion of the abdomen 

Ten individuals from each category were dissected. After dissection each body was 
immediately transferred to 2.5% glutaraldehyde in 0.1 M phosphate buffer for 24 
hours at 4°C. The bodies were then washed twice in 0.1 M phosphate buffer and 
stored in buffer until post-fixation. 

Post-fixation, carried out at Aberdeen University, was in 0.2% osmium tetroxide in 
0.1 M sodium cacodylate buffer for 16-18 hours at room temperature. The bodies 
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were then washed in distilled water and dehydrated in an ethanol series (70-100%). 

After dehydration, the bodies were embedded in araldite (CY212) resin and ultrathin 

sections were cut on a ultramicrotome with a diamond knife. The sections were then 

placed on to 300 mesh copper grids, stained with uranyl acetate and lead citrate and 

viewed with a Philips 301 transmission electron microscope at 80 kV. 

5.4 RESULTS 

Rearing temperature and vector competence of C. nubeculosusfor BTV10 and AHSV4 

A significantly greater proportion of female C. nubeculosus tested positive for the 

viruses (i. e. viral titre >_1.367 loglo TCIDso/midge) after being reared for either the 

whole life cycle or just the pupal stage at 33°C, than at temperatures of 25-32°C (x2 = 

54.66, df = 1, p<0.001; Figure 5.1). In addition, virus species affected the oral 
infection rate and a greater proportion of females tested positive for BTV 10 compared 

to AHSV4 (x2 = 8.48, df = 1, p<0.005; Figure 5.1). The interaction between rearing 

temperature and virus species was not significant (x2 = 0.02, df = 1, NS), indicating 

that the impact of rearing temperature on the oral infection rate of female C. 

nubeculosus was similar for BTV 10 and AHSV4 (Figure 5.1). 

Viral titres in positive midges ranged from 1.867 to 4.2 loglo TCID50/midge. Viral 

titres of BTV 10 and AHSV4 obtained in the positive midges reared at 33°C were not 

significantly different (F1,44 = 0.75, NS; Table 5.1). In addition, the length of exposure 
to 33°C (i. e. for the whole life cycle or just the pupal stage) did not significantly affect 
the titre of virus obtained in the positive midges (F1,43 = 0.09, NS; Table 5.1). The 
interaction between virus species and length of exposure to 33°C during immature 

development was also not significant (F1,42 = 0.08, NS; Table 5.1). 

Table 5.1 Geometric mean viral titres in positive C. nubeculosus, reared at 33°C and 

maintained as adults at 25°C for 10 days after a virus-infected blood-meal. 

33°C 
Mean titre/positive midge ± SE 

(loglo TCIDso/midge) 

BTV10 AIISV4 

Whole life cycle 2.92 ± 0.13 2.74 ± 0.18 

Pupal stage 2.94 ± 0.13 2.87 ± 0.20 
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Figure 5.1 Effect of rearing temperature on the proportion of female ('. mlbeculosluv that 

tested positive (i. e. viral titre >_1.367 loge� TCIDS(/midge) for (a) BTV 10 and (h) Al ISV4, 

following the virus infected blood-meal and 10 days incubation at 25°C. One hundred C. 

'uubeculosus were tested at each rearing temperature. 
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Table 5.2 Survival of blood-fed female C. nubeculosus reared at 25 and 33°C and 

maintained as adults at 25°C and 75% relative humidity (based on 50 females from 

each rearing temperature). Females were 1-2 days old at the time of the blood-meal. 

Rearing Survival range Mean survival Survival rate / 

temperature °C (days) days +SE -SE day 

25 4-21 12.59 0.74 0.67 0.92 

33 4-17 10.66 1.61 1.24 0.91 

Survival of adult C. nubeculosus 

Survival of adult female C. nubeculosus was not significantly affected by rearing 

temperature ()? = 0.74, df = 1, NS), although the mean longevity of adult midges 

reared at 33°C was almost two days shorter than that for adults reared at 25°C (Table 

5.2). 

Impact in the field 

To give an indication of how many hot days are necessary to induce vector 

competence in C. nubeculosus and hence the likelihood of such an event occurring in 

the field, the development times of immature C. nubeculosus at the different rearing 

temperatures were calculated (Table 5.3) using data presented in Chapter 2. Thus 

while 16.8 days are required for development from egg to adult at 33°C only 1.8 days 

are required for pupal development at this temperature. 

To assess the numbers of competent C. nubeculosus that could occur in the field, the 

effect of rearing temperature on both vector competence and immature survivorship 

must be considered. Culicoides nubeculosus survivorship to the adult stage increases 

linearly between rearing temperatures of 12.5 and 30°C but declines rapidly between 

31 and 35°C, as the upper lethal rearing temperature of 35°C is approached (Chapter 
2). Hence a situation arises whereby few individuals will survive to adulthood at 
temperatures close to the upper lethal limit but those that do will have an increased 

chance of being vector competent, while at lower temperatures lots of individuals will 

survive but few will be capable of transmitting virus. 
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To investigate this, a situation in which a female C. nubeculosus lays a batch of 100 

eggs was considered. Initially, the number of eggs that survive to adulthood at the 

different rearing temperatures was determined using data presented in Chapter 2. For 

midges exposed to 33°C for just the pupal stage, the number of midges that survive to 

the pupal stage at 25°C was combined with pupal survival at 33°C. Since the sex ratio 

of Culicoides tends to be 1: 1, half of the individuals that survive to adulthood are 

likely to be female. The number of these females which would be susceptible to 

BTV10 and AHSV4 was then calculated (Table 5.3). Thus potentially 2 BTV10 or 1 

AHSV4 competent C. nubeculosus female could develop for every 100 individuals 

reared at 33°C either for the whole life cycle or just the pupal stage. In contrast, all 

individuals reared at 25-32°C are unlikely to be capable of transmitting BTV 10 and 

AHSV4. 

Electron microscopy 

Although the interpretation of the electron micrographs is speculative, there appear to 

be differences between the guts of C. nubeculosus reared at control and elevated 

temperatures. For example, microvilli on the luminal surface of the gut cells in midges 

reared at 33°C appear disorganised and have lost their rounded turgid appearance 
(Figure 5.2). The basement membrane lining the gut cells of midges reared at 33°C 

appears to be thinner than in midges reared at 25°C (Figures 5.3b and 5.4). 

Furthermore, in midges reared at 33°C one hour after a blood-meal, the same granular 

material appears on both sides of the gut cells, as though there was leakage of material 
from the gut lumen to the exterior (Figure 5.4). 

5.5 DISCUSSION 

Rearing temperatures close to the upper lethal limit significantly increased the oral 
infection rate of C. nubeculosus for both BTV 10 and AHSV4. Thus 13.4% and 6.1 % 

of females that were reared at 33°C tested positive for BTV 10 and AHSV4 

respectively, compared to <3% of females that tested positive at rearing temperatures 

of 25 to 32°C. Due to the impact of rearing temperature on immature survivorship and 
vector competence, potentially two BTV 10 and one AHSV4 competent female could 
develop for every batch of 100 eggs reared at 33°C. Exposure to elevated temperatures 
during the immature stages did not affect the survival of adult C. nubeculosus. 
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a. 

b. 

Figure 5.2 Electron micrographs of the midgut of C. ýýý, he c ulusv,. ý reared at (a) 25"(' 

and (b) 33°C and which had not been blood-fed. Original magnification x 10100. MV 

= microvilli and L= gut lumen. 
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Figure 5.3 Electron micrographs of the midgut of C. Iiuhec"ulosu., reared at 25"(', 
hour after a blood-meal. Original magnification (a) x 6500 and (h) x 18()()(). I. = gut 
lumen, B= blood, MV = microvilli, N= nucleus, GC = gut cells and BM = basement 
membrane. 
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Figure 5.4 Electron micrographs of the midgut of C. nuheculo., us reared at 33"C, 
hour after a blood-meal. Original magnification x 18000 for both (a) and (b). L= gut 
lumen, B= blood, GC = gut cells, BM = basement membrane and T= trachea. The 
same granular material occurs on both sides of the gut epithelium. 
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Exposure of pupae to 33°C was also sufficient to induce vector competence in C. 

nubeculosus for both viruses. However, although the oral infection rates of C. 

nubeculosus reared at 33°C for the pupal stage or the whole life cycle were not 

significantly different, lower infection rates with both BTV10 and AHSV4 occurred 

when only the pupae were exposed to 33°C. In the Lepidoptera, midgut epithelial cells 

present in the adults are formed a short time before the larval/pupal moult (Baldwin et 

al., 1996). If C. nubeculosus development is similar, then by the time pupae were 

transferred to 33°C, the adult midgut epithelial cells would have already started to 

develop. Thus the lower oral infection rates could be because the initial stages of 

midgut development were not subjected to hot conditions. These findings suggest that 

high temperatures during the development of the adult midgut cells (i. e. from before 

the larval/pupal moult to the end of the pupal stage) could result in vector competence 

of C. nubeculosus for BTV 10 and AHSV4 and indicate that hot conditions for the 

whole life cycle are not essential to induce vector competence. 

The higher oral infection rate of C. nubeculosus with BTV10 compared to AHSV4 

could have been because horse blood was used as the source of blood for the blood- 

meals. Sieburth et al. (1991) showed that when a vector species, C. variipennis 

sonorensis, ingested a blood-meal of sheep blood and BTV, some of the BTV 

particles bound to the red blood cells (RBCs), while the free virus particles infected 

the midgut cells. In the case of AHSV4 with horse blood, it is possible that a large 

proportion of the virus particles bind to the horse RBCs, leaving a small proportion of 
free virus particles to initiate infection. However, the affinity of BTV 10 particles to 

the horse blood cells may be low, as horses are not a host for BTV. A larger 

proportion of free virus particles may therefore have been available to initiate 

infection, thereby accounting for the higher oral infection rate of C. nubeculosus with 

BTV10. 

Horse blood was used for the virus infected blood-meals to maximise the likelihood of 
C. nubeculosus becoming infected with the viruses, since high infection rates for 
AHSV (Marchi et al., 1995) and BTV (Burroughs, unpub. obs. ) in C. variipennis 

sonorensis were obtained when horse blood was used. Although the susceptibility of a 
vector species to orbiviruses can vary with the virus species and serotype (Jones and 
Foster, 1978; Bellis et al., 1994; Mecham and Nunamaker, 1994; Venter et al., 1998; 
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Chapter 3), the fact that higher oral infection rates in C. nubeculosus were obtained 

with BTV 10, where there may have been lots of free virus in the blood-meal, 

compared to AHSV4, where many virus particles may have bound to RBCs, suggests 

that C. nubeculosus becomes infected with the viruses via a different route to that 

which would occur in a genetically competent species. 

For example, if vector competence in C. nubeculosus is due to gut damage, it is likely 

that viral infection will occur within a limited time of ingesting the blood-meal. This 

is because the damage is likely to be accentuated when the gut is distended with 

blood, increasing the likelihood of virus particles entering the haemocoel. In addition, 

the peritrophic membrane of C. nubeculosus, which forms around the blood-meal, 

develops by five hours after ingestion (Megahed, 1956). Once the virus particles are 

enclosed by the peritrophic membrane, they may be unable to initiate infection until 

the membrane begins to break down =2-3 days later. However by this time the gut will 

no longer be distended. Hence a high concentration of free virus particles present in 

the gut shortly after a blood-meal will increase the chance of infection. In contrast, 

with genetically competent individuals there is no such time restriction on when virus 

particles can infect the midgut cells and the association of virus particles with RBCs 

therefore does not hinder the infection process. Thus when the blood cells are 

digested, up to 3 days after the blood-meal, the bound virus particles are released and 

can subsequently infect the midgut cells. 

The oral infection rate of C. nubeculosus with BTV 10, when the immatures were 

reared at 33°C, was therefore probably higher than would have occurred if a more 

natural system been employed (e. g. BTV and sheep blood). The lower oral infection 

rate of C. nubeculosus with AHSV4, may provide a better indicator of what would 
have happened in a natural system. However, the fact that an increased oral infection 

rate was still obtained with AHSV4 and high titres were present in the positive 

midges, suggests that vector competence due to elevated rearing temperatures is a real 

phenomenon. 

Preliminary electron microscopy trials revealed that there were differences in the 
midgut tissue of C. nubeculosus reared at control and elevated temperatures. 
However, further trials using greater numbers of midges are necessary to establish the 
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exact nature of these differences. For example, although elevated rearing temperatures 

appeared to result in the thinning of the basement membrane, measurements must be 

taken to confirm this. Grimstad and Walker (1991) found that Aedes triseriatus with 

thinner basement membranes were more likely to develop disseminated La Crosse 

virus infections and suggested that the thinner basement membrane presented a less 

obstructed passage for the virus into the haemocoel. Hence it is possible that the 

thickness of the basement membrane could affect the ability of C. nubeculosus to 

transmit BTV and AHSV. It is also necessary to confirm whether material can pass 

from the gut lumen to the haemocoel by an intercellular pathway following a blood- 

meal in midges reared at elevated temperatures and to establish whether there are any 

further differences in the gut tissue. In addition, it would be interesting to investigate 

whether the ovariole sheath (i. e. outer covering of the ovariole) is affected by rearing 

temperature, since it also consists of a layer of epithelial cells resting on a basement 

membrane. Fu (1996) found that the ovariole sheath of Culicoides acts as a barrier 

preventing virus from entering the developing eggs. Hence if rearing temperature does 

affect the ovariole sheath, it is possible that it may also influence the ability of C. 

nubeculosus to transovarially transmit BTV and AHSV. 

If vector competence for BTV10 and AHSV4 in adult C. nubeculosus reared at high 

temperatures is indeed due to gut damage, then it is likely that they will also be 

susceptible to the other BTV and AHSV serotypes. In addition, since most arboviruses 

replicate in the haemocoel when the midgut barriers are bypassed, hot temperatures 

may not only induce vector competence for orbiviruses but also for a wide variety of 

other arboviruses. Thus under suitable conditions C. nubeculosus could become a 
`universal vector' (Mitchell, 1983). In addition, the effects of high temperatures on 

vector competence may not be restricted to C. nubeculosus but also occur in other 
`non-vector' Culicoides species. For example, Mellor et al. (1998) speculated that 

field isolations of AHSV4 made from mixed pools of C. obsoletus and C. pulicaris in 

Spain (Mellor et al., 1990) could be the result of the `leaky gut' phenomenon. 

However, the requirement of such high temperatures (i. e. 33°C) to induce vector 

competence in C. nubeculosus will restrict the prevalence of this mechanism both 

spatially and temporally. Nevertheless, the fact that hot conditions for the whole life 

cycle are not essential and that just two days of hot conditions during the pupal stage 

114 



Rearing temperature and vector competence of Culicoides nubeculosus 

can induce competence, increases the chances of susceptible C. nubeculosus occurring 

in the field. The increase in frequency and intensity of extremely warm days predicted 

to occur with climate change (Houghton, 1997) will also enhance the chances of such 

an event occurring. 

Thus despite the need for relatively hot temperatures, it is possible that competent C. 

nubeculosus could occur in the field. The implications of this are particularly worrying 

with regards to the risk of BTV and AHSV in Europe. Lord et al. (1996) have shown 

that vector numbers are critical in determining both the likelihood and severity of an 

outbreak, following the introduction of virus. Hence epidemics of BTV or AHSV in 

areas where C. imicola (the principal European vector) and C. nubeculosus coexist 

could become more severe, if hot conditions resulted in C. nubeculosus also being 

able to transmit virus. In addition, C. nubeculosus is much more widely distributed in 

Europe than C. imicola. Hence under the right conditions it is possible that competent 

Culicoides could occur in areas not previously considered to have competent 

Culicoides populations. For example, temperatures as high as 33.9°C have been 

recorded in London during July (Anon, 1996), so that even parts of the UK could be at 

risk of BTV and AHSV. 
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CHAPTER 6: USING CLIMATE DATA TO MAP THE POTENTIAL DISTRIBUTION OF 

CUUCOIDES IMICOLA (DIPTERA: CERATOPOGONIDAE) IN EUROPE. 

6.1 ABSTRACT 

Culicoides imicola, a vector of bluetongue virus and African horse sickness virus, is 

principally Afro-Asian in distribution, but has recently been found in parts of Europe, 

including Iberia and Greece. A logistic regression model based on climate data 

(temperature, saturation deficit, rainfall and altitude) and the published distribution of 

C. imicola in Iberia was developed and then applied to other countries in Europe, to 

identify where C. imicola could become established. The model identified three 

temperature variables (minimum of the monthly minimum temperature, maximum of 

the monthly maximum temperature and number of months with mean temperature 

212.5°C) as significant determinants of the distribution of C. imicola in Iberia and 

indicated that under current conditions C. imicola could extend its distribution in Spain 

and Greece. Although areas of Italy and Albania were also identified as suitable for C. 

imicola, its presence in these regions is initially dependent on its spread from eastern to 

western Greece, which is likely to be hindered by local topography. To simulate the 

effect of global warming, temperature values in the model were increased by 2°C. 

Under these conditions, the potential spread of C. imicola in Spain and Greece will be 

even more extensive than that predicted under current conditions. 

6.2 INTRODUCTION 

The biting midge Culicoides imicola (Diptera: Ccratopogonidae) is found in sub- 
Saharan Africa (Meiswinkel, 1989), North Africa (Macfie, 1943; Szadziewski, 1984; 

Baylis et al., 1997) and southern Asia, as far east as Laos (Howarth, 1985) and 
Vietnam (Wirth and Hubert, 1989). It is also found in parts of Europe, including south- 

western Iberia (Rawlings et al., 1997) and the Greek islands of Lesbos (Boorman and 
Wilkinson, 1983), Rhodes (Boorman, 1986), Chios, Kos, Samos (Mellor, pers. comm. ) 

and Evia (Patakakkis, unpub. obs. ). In addition, it was recently discovered on mainland 
Greece, in the provinces of Chaldithiki, Larisa and Magnisia (Patakakkis, unpub. obs. ) 

and it is likely that it will expand its range into further areas of Europe (e. g. Rawlings 

et al., 1998). 
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Table 6.1 Outbreaks of bluetongue and African horse sickness in Europe. 

Outbreak Reference 

Bluetongue 

Portugal and Spain 1956-60 

Lesbos 1979 

Rhodes 1980 

Mainland Greece, Chios, Evia, Kos, 
Lesbos, Rhodes and Samos 1999 

Bulgaria 1999 

European Turkey 1999 

African horse sickness 

Spain 1966 

Spain and Portugal 1987-1990 

Campano Lopez and Sanchez Botija (1958) 

Vassalos (1980) 

Dragonas (1981) 

Anon (1998), Anon (1999d, e), Anon (2000b) 

Anon (1999b) 

Anon (1999c) 

Diaz Montilla and Panos Marti (1968) 

Rodriguez et al. (1992) 

Culicoides imicola is a vector of several arboviruses of domestic and wild animals, 

including bluetongue virus (BTV), which infects ruminants and African horse sickness 

virus (AHSV), which infects equids. The diseases caused by these viruses, bluetongue 

(BT) and African horse sickness (AHS), are of such major international concern that 

they have attained OlE list `A' status. Although BT and AHS are not endemic in 

Europe, several outbreaks have occurred in the south (Table 6.1). Culicoides imicola 

has been implicated as the principal vector species in these outbreaks (Mellor, 1990; 

Ortega et al., 1998; Patakkakis, unpub. obs. ), except for the BT outbreak in Bulgaria, 

where C. imicola does not seem to occur (Mellor, pers. comm. ). 

Areas where C. imicola is found are potentially at risk of BT and AHS. Consequently, 

it is useful to identify where C. imicola could become established in Europe. Climate is 

a major factor governing the distribution of C. imicola. For example, there is some 

evidence that the northern limit of C. imicola in Iberia is determined by low 

temperature (Baylis and Rawlings, 1998). Where temperatures are favourable, 
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precipitation may influence distribution through its impact on the availability of 

breeding sites. Culicoides imicola breeds in wet, organically enriched soil or mud 

(Walker and Davies, 1971; Braverman et al., 1974; Lubega and Khamala, 1976; 

Walker, 1977; Braverman, 1978) and in Africa it tends to occur in regions with an 

annual rainfall of 300-700 mm (Meiswinkel and Baylis, 1998). One approach to 

establish where C. imicola could occur is therefore to identify the most significant 

climatic determinants of its current distribution in Europe and then from this, derive 

`expected' distributions for other parts of Europe. 

The present study was therefore carried out to identify the most important climatic 

factors influencing the distribution of C. imicola, using published data on the presence 

and absence of C. imicola in Iberia (Rawlings et al., 1997) together with climate data 

from this region (Anon, 1972). The derived climatic model can then be used to identify 

other areas of Europe which have suitable climates for the occurrence of C. imicola. In 

addition, with a, 2°C rise in the global mean temperature expected to occur during the 

next 100 years (Intergovernmental Panel on Climate Change, 1996), it is likely that C. 

imicola could extend its range even further in Europe (e. g. 2°C change in the mean 

annual temperature corresponds to a northward shift of -200 km; Hughes, 2000). This 

increase in temperature can then be incorporated into the model, to investigate how 

climate change may affect the distributional range of C. imicola in Europe. 

6.3 METHODS 

Climate data for sites in Iberia were obtained from Anon (1972) and were based on the 

average values for the period 1931-60. Thirty sites occurred within regions for which 

there is information about the occurrence of C. imicola (Rawlings et al., 1997). 
Culicoides imicola was classed as present at 16 sites and absent from 14 sites (Figure 
6.1). 

Climatic Variables 

Temperature variables for the 30 sites used in the analysis included minimum of the 

monthly minimum, minimum of the monthly mean, mean of the monthly mean, 
maximum of the monthly mean, maximum of the monthly maximum, number of months 

with mean temperatures >_10.5°C, number of months with maximum temperatures 
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Figure 6.1 Sites included in the logistic regression analysis of the distribution of C. 

imicola in Iberia. The presence or absence of C. imicola at the sites was determined 

from Rawlings et al. (1997). 

>_12.5°C and number of months with mean temperatures >_12.5°C. The number of 

months with mean temperatures >_10.5°C was included, since this is the lowest 

temperature at which successful immature development to adulthood can occur in the 

model species, C. variipennis sonorensis (Chapter 2). The number of months with 

maximum temperatures >_12.5°C was incorporated as Sellers and Mellor (1993) found 

that C. imicola adults could only survive the winter in areas where the average daily 

maximum temperature during the coldest month of the year (i. e. minimum of the 

monthly maximum temperature) was >_12.5°C. However, while adults may survive 

when the maximum temperature during the coldest month is >_12.5°C, their activity is 

likely to be limited. Consequently, the number of months with mean temperatures 

>_12.5°C was also considered. 
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The annual daily mean saturation deficit (Appendix 2), a measure of the drying power 

of air based on both air temperature and relative humidity, was also included for each 

site. This was determined by averaging the annual daily maximum and minimum 

deficits: the former was calculated from the annual average daily maximum 

temperature and annual average daily minimum relative humidity (highest saturation 

deficit); the latter from the annual average daily minimum temperature and the annual 

average daily maximum relative humidity (lowest saturation deficit). 

The total annual rainfall and altitude for each site were also included in the analysis. 

Analysis 

Logistic regression, carried out in Glim 3.77, was used to determine which climatic 

variables were most important in distinguishing between sites where C. imicola is 

present and absent. The derived model was then used to calculate the probability of 

occurrence of C. imicola at each of the 30 sites. Culicoides imicola was classed as 

present at sites with a probability of occurrence value of Z0.5 and absent from sites 

with a value <0.5. The predicted presence or absence of C. imicola at each site was 

compared with the published data (Rawlings et al. 1997; Figure 6.1), in order to assess 
the reliability of the model. The model was then applied to additional sites in Iberia for 

which there is no information about the occurrence of C. imicola and was also used to 

assess the suitability of sites in Albania, Bosnia, Bulgaria, Croatia, European Turkey, 

France, Greece, Italy, Macedonia, Slovenia, Switzerland and Yugoslavia. To simulate 

climate change the temperature values were increased by 2°C and the model was then 

reapplied to the sites in Europe. 

6.4 RESULTS 

Mean values for the climatic variables at the 30 sites in Iberia used to produce the 
logistic regression model are shown in Table 6.2. Three climatic variables - minimum 

of the monthly minimum temperature, maximum of the monthly maximum temperature 

and the number of months with mean temperature 212.5°C were significant in 
distinguishing between sites where C. imicola is present and absent (Table 6.2). 
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Table 6.2 Mean values (+/-SE) for the climatic variables and results of the logistic 

regression analysis for the distribution of C. imicola in Iberia. 

Sites with Sites without 
Climatic Variable C. imicola C. imicola df= 1 

n=16 n=14 

Altitude ft 274.4 ± 61.2 184.9 ± 59.1 0.33 

Temperature °C 

Minimum of the monthly minimum 5.1±0.7 4.8 ± 0.6 6.39* 

Minimum of the monthly mean 8.9 ± 0.6 8.7 ± 0.6 0.35 

Mean of the monthly mean 16.5 ± 0.5 15.5± 0.4 2.22 

Maximum of the monthly mean 25.0 ± 0.6 23.0 ± 0.7 0.44 

Maximum of the monthly maximum 31.8 ±0.8 28.3 ± 1.0 7.28** 

No. months/year mean 9.6±0.5 9.4 ± 0.4 0.02 
temperature 210.5°C 

No. months/year maximum 11.1 ±0.3 11.1 ±0.3 0.04 
temperature 212.5°C 

No. months/year mean 8.5 ± 0.4 7.8 ± 0.3 4.34* 
temperature 212.5°C 

Saturation deficit mbar 7.2 ± 0.3 6.0 ± 0.4 0.44 

Total annual rainfall mm 607.4 ±46.4 635.5 ± 86.6 0.71 

* p<0.05; ** p<0.01 

The logistic regression model based on these variables is: 

y=0.5460*A + 0.6020*B - 0.4243*C -15.78 

where A is the minimum of the monthly minimum temperature, B is the maximum of 
the monthly maximum temperature, C is the number of months with mean temperature 

>_12.5°C and y is a logit (i. e. natural log of the odds ratio; ln(p/1-p)). The probability of 

occurrence of C. imicola (p) can then be calculated using the following formula 

(Crawley, 1993): 
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1 
p=1 

1+ 
ey 

The model correctly predicted the presence or absence of C. imicola at 25 of the 30 

sites (83%). However, C. imicola was incorrectly predicted as present at 3 sites (10%) 

- Granada, Almeria and Alicante in eastern Spain and incorrectly predicted as absent at 

2 sites (7%) - Braganca and Coimbra in Portugal. 

The suitability of sites in Europe for the occurrence of C. imicola based on the model 

established for Iberia is shown in Figure 6.2. In addition to southern Iberia, parts of 

southern Italy, Sardinia and Sicily would be suitable for C. imicola, should it be 

introduced into these regions. The majority of sites in Greece would also be 

favourable, except for parts of northern Greece and the Peloponnese. Several sites 

along the eastern Adriatic Sea coastline, ranging from Albania to Croatia, would also 

be suitable. The furthest north that C. imicola could potentially occur is Split 

(43°31'N) in Croatia. 

With a 2°C increase in temperature greater areas of Europe will become favourable for 

C. imicola (Figure 6.3). For example, in Spain sites along the east coast will become 

suitable, although areas along the Atlantic Sea coastline of both Spain and Portugal 

will remain unfavourable. Sites on the south coast of France and in Corsica will 

. become favourable. The majority of southern Italy extending up the Ligurian Sea 

coastline e. g. Genoa (44°25N) will also become suitable. All sites in Greece, except 
for Florina (40°48N) near to the border with Macedonia, would become suitable and 

along the eastern Adriatic Sea coastline C. imicola could potentially occur up to Rijeka 

(45°20N) in Croatia. 

Although annual rainfall was not significant in distinguishing between sites where C. 

imicola is present and absent in Iberia (Table 6.2), it may be an important determinant 

of the distribution of C. imicola in other parts of Europe. Annual rainfall is similar at 

sites where C. imicola is both present and absent in Iberia and is generally within the 

favourable range of 300-700 mm per year, although C. imicola also occurs at some 
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sites with an annual rainfall of 701-1000 mm (e. g. Braganca, Castelo Branco, Coimbra 

and Lisbon; Figure 6.4). Culicoides imicola pupae drown when breeding sites are 

flooded (Nevill, 1967) and hence it is likely that sites with an annual rainfall of >1000 

mm will be unsuitable for C. imicola. Thus while rainfall is not a limiting factor in 

Iberia, several sites along the eastern Adriatic sea coastline predicted by the model (on 

the basis of temperature) as suitable for the occurrence of C. imicola may in fact be 

too wet (Figure 6.4). Furthermore, the global mean precipitation is expected to 

increase as climate changes (Intergovernmental Panel on Climate Change, 1996), 

which could result in additional sites becoming unsuitable for the occurrence of C. 

imicola. 

6.5 DISCUSSION 

The distribution of C. imicola in Iberia appears to be limited by temperature. The 

minimum of the monthly minimum temperature, the maximum of the monthly 

maximum temperature and the number of months with mean temperatures 212.5°C 

were significant determinants of the distribution of C. imicola. The model based on 

these temperature variables displayed a high degree of accuracy in predicting the 

occurrence of C. imicola in Iberia. However, although the analysis may have identified 

the major environmental constraints, the small percentage of sites for which the 

presence or absence of C. imicola was incorrectly predicted suggests that there may be 

additional factors involved (e. g. presence of vertebrate hosts, soil type or other climatic 

variables). Nevertheless the sites in south-eastern Spain (e. g. Granada, Almeria and 
Alicante) where C. imicola was incorrectly predicted to occur, represent areas where 
C. imicola could expand into. Rawlings et al. (1998) and Baylis and Rawlings (1998) 

also identified this region as suitable for the invasion of C. imicola and it is possible 

that further, more intensive, sampling in this region may reveal its presence. 

The impact of temperature on the distribution was not unexpected, as C. imicola 

reaches the northern limits of its global distribution in Iberia. The analysis indicates that 

the presence of C. imicola is favoured by high summer temperatures combined with 

mild winter temperatures, while the number of months with mean temperatures 

212.5°C provides a measure of the likelihood of population persistence and growth. 
Thus it appears that the distribution of C. imicola is limited by two factors. First, the 
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severity of the winter, which will prevent adult and immature survival in some areas. 

Second, summer temperatures, which will influence the development and population 

growth rates and hence also the likelihood of the midges surviving the subsequent 

winter. 

The application of the model to other European countries has provided useful insight 

into identifying where C. imicola could occur. In Greece, not only does the model 

predict that C. imicola could occur in some of the areas where it has already been 

found (e. g. Chaldithiki, Larisa, Chios, Lesbos and Samos), but also that it could occur 

in areas further south in mainland Greece and the islands of Andros, Corfu, Crete, 

Limnos, Naxos and Zante. However, the model does not account for topography and 

hence C. imicola may not necessarily occur at all these sites. For example, for C. 

imicola to reach Corfu and Zante, it would have to initially extend its range into 

western Greece but the Pindos Mountains in central Greece are likely to hinder this 

process. However, the spread of C. imicola south of Larisa is feasible and further 

sampling in this area may reveal its presence. 

The occurrence of C. imicola in southern Italy is again largely dependent on its initial 

spread into western Greece, from where the adult midges could be carried on the wind 
into Italy. For example, the distance between Corfu and the heel of Italy is <200 km, 

which is well within the range of distances (i. e. up to 700 km) over which Culicoides 

can be carried on the wind (Sellers, 1992). The chances of C. imicola occurring in 

Albania are also largely dependent on its spread into western Greece. However, if C. 

imicola did reach Albania, it would be unlikely to spread further north into the coastal 

regions of Yugoslavia, Bosnia and Croatia for two reasons. First, the rainfall in these 

areas is likely to be too high (i. e. >1000 mm/year). Second, the mountains in 

Montenegro would present a physical barrier to the spread of the midges. 

If the global mean temperature does increase by 2°C by 2100 (as predicted by climate 

change scenarios; Intergovernmental Panel on Climate Change, 1996), C. imicola 

could potentially extend its range even further in Europe. For example, in Spain the 

model indicates that C. imicola could occur further north and cast. It is even possible 
that C imicola could reach the south of France. In Greece, C. imicola could 
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potentially extend its range into the north-east of the country (e. g. Kavala and 

Alexandroupolis) and continue its southwards migration. In addition, if C. imicola ever 

reaches Italy or Albania, greater areas of these countries would have suitable climates 

for its occurrence. 

However, while the model provides insight into the potential influence of global 

warming on the range of C. imicola in Europe, it must be borne in mind that the 

distribution of a species is affected by additional factors which were not incorporated 

into the model. For example, interactions with other species (e. g. competition and 

enemy-victim interactions) will influence distribution and Davis et al. (1998a, b) found 

that these interactions are also likely to vary with temperature. Consequently, the 

actual range of a species under warmer conditions may differ from that predicted from 

climate data alone. In addition, the model does not account for adaptation of C. 

imicola to the cooler temperature regimes, which could result in C. imicola exploiting 

even greater areas of Europe. 

In this chapter, I have described a simple model for predicting the potential range of C. 

imicola in Europe, both currently and if conditions should warm with climate change. 
Culicoides imicola is the principal vector species of BTV and AHSV in Europe and 
hence it is essential to establish where it could occur. The model displayed a high 

degree of accuracy in predicting the occurrence of C. imicola in Iberia when compared 

with the published data (Rawlings et al., 1997) and also indicated that C. imicola could 

potentially expand its distribution in Spain and Greece. In addition, if C. imicola can 

extend its range into western Greece, it may then be able to invade both Italy and 
Albania. Furthermore, while it must be borne in mind that there is a degree of 

uncertainty associated with predictions of distribution based on climate data alone, it is 

likely that with global warming the spread of C. imicola in Europe will be even more 

extensive than that predicted under current conditions. 
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CHAPTER 7: CONCLUSIONS, CONSEQUENCES AND PROSPECTS 

In this final chapter I first summarise my results. I then discuss the current climate 

change scenarios and consider how these changes could alter the risk of bluetongue 

virus (BTV) and African horse sickness virus (AHSV) occurring in Europe. Finally, I 

consider methods for controlling the viral diseases and suggest areas for future 

research. 

7.1 CONCLUSION 

To assess the potential impact of climate change on Culicoides-transmitted viruses, it 

is essential first to understand how climatic factors affect the vector and the viruses. In 

this thesis I have attempted to quantify the impact of temperature on some aspects of 

virus transmission. For example, I have shown that temperature affects both the 

development rate and survivorship of immature Culicoides, which in turn influence 

the adult recruitment rate. The optimum temperatures for recruitment of adult midges 

were estimated to be 25-30°C for C. nubeculosus and 25-35°C for C. variipennis 

sonorensis, while the minimum temperatures for development were calculated as 
8.1°C and 10.7°C respectively (Chapter 2). I have also shown that temperature can 

affect the proportion of adult Culicoides that could potentially transmit the viruses, 

through its impact on the duration of the viral extrinsic incubation period and adult 

survival. High temperatures (27-30°C) favour transmission of the viruses because 

although adult longevity is reduced (Chapter 3), the duration of the extrinsic 
incubation period is sufficiently shortened (Chapters 3 and 4) that a greater proportion 

of midges could survive to transmit virus. In contrast, at temperatures below the 

theoretical minimum for virus development (e. g. 7.6-15.1°C depending on the virus 

species and serotype; Chapters 3 and 4) virus transmission does not occur. However, 

if temperatures subsequently increase, viral development can recommence, increasing 

the potential for transmission (Chapter 3). I have also shown that the impact of 
temperature on the vector competence of Culicoides vector populations is variable 
(Chapters 3 and 4). For example, in some cases vector competence increased with 
temperature (e. g. C. variipennis sonorensis infected with AIISV4 or EIHDV1), while 
in others, temperature had no effect on vector competence (e. g C. variipenf: is 

sonorensis infected with BTV 10 or BTV16 and C. imicola infected with AHSV8). In 
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addition, I found that exposure of immature C. nubeculosus (a non-vector species) to 

temperatures close to their upper lethal limit (33°C), for the whole life cycle or just 

the pupal stage, could induce vector competence for BTV and AHSV (Chapter 5). 

Finally, I have shown that temperature is a significant factor limiting the distribution 

of C. imicola in Europe. With global warming, the potential spread of C. imicola in 

Europe is likely to be even more extensive than that predicted under current 

conditions (Chapter 6). 

7.2 CONSEQUENCES OF CLIMATE CHANGE ON BTV AND AHSV 

Climate change scenario 

Climate models predict that the annual global mean surface air temperature will 

increase by 2°C by 2100, with an uncertainty range from 1.5 to 3.5°C 

(Intergovernmental Panel on Climate Change, 1996; Houghton, 1997). Relatively 

greater increases are expected in winter than in summer, and in night time versus day 

time temperatures. In addition, there is expected to be an increase in the frequency of 

very warm days coupled with a decrease in the number of very cold days. Spring is 

also expected to arrive earlier and autumn later, and across Europe, Menzel and 
Fabian (1999) have calculated that the average annual growing season has already 
lengthened by 10.8 days since the 1960s, due to increasing temperatures. The annual 

global mean precipitation is also predicted to increase, although some areas may get 
drier (Intergovernmental Panel on Climate Change, 1996). Additionally, changes in 

wind patterns are likely. 

Consequences of climate change 

Changes in vector distribution: Warmer temperatures are likely to increase the 

geographic range of many insect species (unless the upper lethal limit is exceeded; 
Gates, 1993) and climate changes in the past have been associated with shifts in insect 
distributions (Elias, 1994,1995). Indeed some insect species are already responding to 
the anomalous climate of the 20th century. For example, in a survey of 35 non- 
migratory European butterfly species, Parmesan et al. (1999) found that 14 species 
had extended their range northwards by 35-240 km during the last 100 years. 

Climate change is therefore likely to influence the distribution of Culicoides vector 
species. Of greatest concern with regards to BTV and AHSV in Europe is the potential 
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expansion in the range of C. imicola. The distribution of this species in Europe 

appears to be limited by low temperatures (Baylis and Rawlings, 1998; Chapter 6) and 

hence, as conditions warm, C. imicola will be able to exploit greater areas of this 

continent. Culicoides imicola is currently known to occur in south-western Iberia 

(Rawlings et al., 1997), eastern Greece (Patakakkis, unpub. obs. ) and several Greek 

islands (Boorman and Wilkinson, 1983; Boorman, 1986; Mellor pers. comm.; 

Patakakkis, unpub. obs). The areas at particular risk from the invasion of C. imicola, if 

conditions warm, include eastern Spain and north-eastern and southern Greece. 

Conditions in western Greece are also likely to be suitable for C. imicola, although its 

spread into this area may be hindered by the Pindos mountains in central Greece. 

However, if C. imicola can extend its range into western Greece, it may then be able 

to invade both Italy and Albania. 

The expansion in range of C. imicola will increase the areas of Europe at risk of BTV 

and AHSV. In addition, the extended distribution of C. imicola could bring BTV and 

AHSV into the range of C. obsoletus and C. pulicaris. These species are potential 

vectors (Mellor and Pitzolis, 1979; Mellor et al., 1990) and are much more widely 
distributed in Europe than C. imicola. Thus once infected it is possible that they could 

spread the viruses over even larger areas of Europe (Mellor and Boorman, 1995). 

Indeed this phenomenon may have been involved in the recent BTV outbreak in 

Bulgaria. For example, C. imicola is thought to be absent from Bulgaria, while C. 

obsoletus was the most numerous species trapped at infected sites (Mellor, pers. 

comm. ). At the time of the outbreak, BTV was also reported from Greece and Turkey, 

where C. imicola and C. obsoletus coexist (Jennings et al., 1983; Mellor et al., 1984; 

Patakakkis, unpub. obs. ). Hence it is possible that C. obsoletus, infected in these 

regions, were then able to spread the virus to more northerly populations of C. 

obsoletus, such as those in Bulgaria. 

However, Europe is not the only continent likely to suffer from an increased risk of 
Culicoides-transmitted viruses due to climate induced changes in vector distribution. 

For example, in Australia BTV vector species C. ºvadai and C. brevitarsis arc 
predicted to extend their distributions into some sheep and cattle rearing areas which 
are currently vector-free (Sutherst, 1990; Standfast and Maywald, 1992; Sutherst, 
1993; Ward, 1994). In addition, a further 15 states in the USA are predicted to become 
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endemically infected with BTV (Gibbs et at., 1989) due to the expansion in the range 

of the principal vector species C. variipennis sonorensis. 

Changes in vectorial capacity: Climate change will also affect the vectorial capacity 

of Culicoides populations. For example, adult Culicoides are likely to become more 

abundant. Thus increasing temperatures coupled with an extension in the development 

season will result in a greater number of generations (and therefore adults) per year. In 

addition, the overwintering ability of adult Culicoides (as well as the immature stages 

of non-diapausing species) is likely to improve, as winters become both warmer and 

shorter. For example, Bishop et at. (1995) showed that a 2°C rise in winter 

temperatures could extend the last occurrence of adult C. brevitarsis by 0.7 months. 

Improved overwintering success is also likely to increase the spring population input, 

which in turn could result in larger populations during the summer. 

Climate change will also affect the proportion of adult Culicoides capable of 

transmitting the viruses. For example, warmer temperatures will increase the 
likelihood of female Culicoides surviving long enough to blood-feed after completing 

the viral extrinsic incubation period. Vector competence will also be affected, as 

temperatures will be conducive for virus development for a greater proportion of the 

year. The impact of warmer temperatures on vector competence will be even greater 
for those virus-vector combinations where vector competence increases with 
temperature. In addition, the predicted increase in frequency and intensity of 

extremely warm days could result in the creation of new vector species (e. g. C. 

nubeculosus via the leaky midgut phenomenon). 

The impact of climate change on vectorial capacity will have three main effects on 
BTV and AHSV transmission in Europe. First, the greater abundance of adult 
Culicoides combined with the increased proportion of females capable of transmitting 

virus will increase the risk of an epidemic occurring following the introduction of 
virus into an area. The greatest risk will be at times of the year when temperatures 

reach -25-30°C (i. e. when conditions are optimal for adult recruitment and virus 
transmission). Second, as temperatures will be conducive for both viral and 
Culicoides development for a greater proportion of the year, the length of the viral 
transmission season will increase. Third, the enhanced overwintering success of adult 
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Culicoides combined with the extension in the development season, will increase the 

seasonal occurrence of adult midges. In turn, this will improve the overwintering 

ability of the viruses. 

In summary, it is likely that the influence of climate change on vector distribution and 

vectorial capacity will serve to extend the areas of Europe at risk of BTV and AHSV, 

as well as increasing the likelihood and severity of epidemics within these regions 

following the introduction of virus. 

Other vector-borne diseases 

The principles involved in the transmission of BTV and AHSV by Culicoides are 

similar to those of many other vector-borne diseases. Indeed, changes in the 

geographic distribution and seasonal occurrence of diseases such as malaria 

transmitted by anopheline mosquitoes (Martin and Lefebvre, 1995; Martens et al., 

1999), dengue and yellow fever transmitted by Aedes aegypti and Ae. albopictus 

(Shope, 1991), and sandfly fever and leishmaniasis transmitted by Phlebotomus. 

papatasi (Cross and Hyams, 1996) are also predicted to occur with climate change. 

7.3 PROSPECTS 

BTV and AHSV pose an increasing threat to Europe during the 21st century and it is 

therefore vital that effective control methods are available. Control programmes 

generally include the vaccination of susceptible animals and at present live attentuated 

vaccines are available for use against both viruses. These are generated by adapting 
field isolates of the viruses to growth in vitro and serially passaging them in tissue 

culture cells. This process selects viruses that become increasingly adapted to growth 
in vitro, but which have a decreased pathogenicity for the vertebrate host. 

However, while these vaccines are cheap to produce and provide a high level of 

protection in susceptible vertebrates, there are several undesirable side-effects. First, 

some attentuated BTV strains are teratogenic (Erasmus, 1990; Johnson et at., 1992a, b) 

and pregnant ruminants treated with these vaccines may abort or produce young with 

congenital abnormalities. Second, there is concern that the vaccine viruses could 

revert to virulence. Indeed the death of cattle in the recent BTV outbreak in Rhodes 
(1999) has been attributed to this by some authorities (Anon, 2000a). Third, it is 
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possible that the attentuated viruses could reassort with field viruses, potentially 

resulting in the creation of new viral strains. Fourth, given that most animals develop 

a viraemia as a result of vaccination, there is concern that Culicoides vectors could 

transmit the vaccine viruses. Furthermore, following challenge with a virulent virus, 

some vaccinated animals may develop a viraemia, although clinical signs and death 

are prevented (House et al., 1992). These animals would then be a covert source of 

virus for Culicoides vectors. Fifth, vaccinated animals cannot be distinguished 

serologically from those naturally infected with the viruses. 

While these vaccines may be suitable for use in enzootic regions, where the principal 

aim is to reduce animal losses by protecting against disease, they are not necessarily 

appropriate for use in non-enzootic areas (such as Europe), where the goal is 

eradication. Ideally a vaccine which protects susceptible animals from disease, as well 

as preventing Culicoides vectors from becoming infected should be used. 

Consequently, given the increasing threat that BTV and AHSV pose to Europe, it 

would be advantageous to develop alternative vaccine strategies that satisfy these 

criteria. 

Indeed, in the case of BTV (which has become the priority in view of the recent BTV 

outbreaks in Greece and Bulgaria), the European Union is considering two options. 
First, the development of inactivated whole virus vaccines. Although these vaccines 

are expensive to produce, they have a number of advantages. For example, they cannot 

revert to virulence or recombine with other viruses. They do not cause a viraemia in 

inoculated animals and therefore cannot infect Culicoides vectors. Further, House et 

al. (1994) found that horses treated with two doses of an inactivated AHS vaccine 

were prevented from developing a viraemia following exposure to a virulent virus 

strain. In addition, with further research it may be possible to differentiate between 

animals treated with inactivated vaccines and those naturally infected. For example, 

viral non-structural proteins (NS 1, NS2 and NS3) can be removed during the viral 

purification procedure and assays that detect antibodies to these non-structural 

proteins can then be used to differentiate vaccinated from naturally infected animals. 
Second, there is the possibility of using subunit virus vaccines, which contain virus 

proteins but no viral genetic material. These vaccines may include those based on 
virus-like particles, which contain the core viral proteins VP3 and VP7 and the outer 
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capsid proteins VP2 and VP5, and core-like particles, which contain only the core 

proteins VP3 and VP7 (see Figure 1.2). These vaccines are also unable to revert to 

virulence, recombine with other viruses or be transmitted by insects. However, the 

development of commercial quantities of recombinant virus vaccines may prove to be 

difficult. 

As well as developing alternative vaccines for the control of BTV and AHSV in 

Europe, future research should focus on the vectors. For example, in order to identify 

areas of Europe at risk from the viral diseases, it is essential to establish the full extent 

of the distribution of C. imicola. In particular, greater areas of Greece should be 

surveyed and it would also be advantageous to monitor the spread of C. imicola in 

Europe as conditions warm. In addition, the climatic requirements of this species 

should be defined more precisely. Identification of the parameters influencing the 

abundance and seasonality of C imicola would also allow for the more accurate 

prediction of high or low risk years for the occurrence of the viruses. Finally, the role 

of the potential vector species C. obsoletus and C. pulicaris in the transmission of 

BTV and AHSV must be defined more clearly. 
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APPENDIX 1 

Calculation of Viral Titres 

Method for calculation of TCID50 (i. e. dilution of virus required to infect 50% of 

cells) adapted from Spearman (1908) and Kärber (1931): 

No. of test units with CPE at dilutions 
higher than that producing 100% CPE Highest dilution 

+0.5+ Loglo TCIDso =- 
(giving 

100% CPE) No. of test units per dilution 

Calculations 

1.1 Pools of 5 C. variipennis sonorensis (Chapter 3) 

- Pools of midges ground up in 0.5 ml of diluent 

-6 ten-fold dilutions prepared 

- 0.1 ml of each dilution inoculated onto each of 6 microtitre plate wells (test units) 

Example 

Loglo virus dilution Infected test units 

-1 6/6 

-2 6/6 

-3 6/6 

-4 4/6 

-5 1/6 

-6 0/6 

Logio TCID50 = -(-3) + 0.5 + 5/6 

= 4.333 Iogto TCID50/0.1 ml (given that inoculation of virus dilution was 0.1 ml) 

=I loglo + 4.3331ogto TCID50/m1 

= 5.3331ogto TCID50/mla 

a To calculate the login TCID50/5 midges, 0.3 logjo (_ 2) was subtracted from this 

value, as the pools of midges were ground up in half the volume (i. e. 0.5 ml). 

136 



Appendix 1 

This assay could detect viral titres of 1.367 - 7.2 login TCID50/5 midges. The first 

infected test unit (i. e. 1/6 infected test units, -1 loglo dilution) represented a titre of 

1.367 logro TCID50/5 midges and each additional infected test unit represented a titre 

of 0.167 log, o TCID50/5 midges. 

1.2 Individual C. variipennis sonorensis (Chapter 3) 

- Individual midges ground up in 0.5 ml of diluent 

-3 ten-fold dilutions prepared 

- 0.1 ml of each dilution inoculated onto each of 5 microtitre plate wells (test units) 

Example 

Loglo virus dilution Infected test units 

-1 5/5 

-2 2/5 

-3 0/5 

Loglo TCIDso = -(-1) + 0.5 + 2/5 

= 1.91oglo TCID50/0.1 ml (given that inoculation of virus dilution was 0.1 ml) 

=I logio + 1.9 loglo TCID501m1 

= 2.9 log10 TCID5o/mlb 

b To calculate the loglo TCID50/midge, 0.3 logio (= 2) was subtracted from this value, 

as individual midges were ground up in half the volume (i. e. 0.5 ml). 

This assay could detect viral titres of 1.4 - 4.2 login TCID50/midge. The first infected 

test unit (i. e. 1/5 infected test units, -1 logio dilution) represented a titre of 1.4 logio 

TCID5o/midge and each additional infected test unit represented a titre of 0.2 logto 

TCID50/midge. 
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1.3 Pools of 25 C. imicola (Chapter 4) 

- Pools of midges ground up in 1 ml of diluent (midge suspension) 

-4 ten-fold dilutions prepared 

- 0.1 ml of midge suspension and each dilution inoculated onto each of 4 microtitre 

plate wells (test units) 

Example 

Loglo virus dilution Infected test units 

0 4/4 

-1 4/4 

-2 4/4 

-3 1/4 

-4 0/4 

Logio TCID50 = -(-2) + 0.5 + 1/4 

= 2.751oglo TCID50/0.1 ml (given that inoculation of virus dilution was 0.1 ml) 

=I loglo + 2.751ogbo TCID50/m1 

= 3.75 logio TCID50/m1° 

c Since the pools of midges were ground up in 1 ml of diluent this value is equivalent 

to the TCID50/25 midges. 

This assay could detect viral titres of 0.75 - 5.5 login TCID50/25 midges. The first 

infected test unit (i. e. 1/4 infected test units, undiluted midge suspension) represented 

a titre of 0.75 logto TCID50/25 midges and each additional infected test unit 

represented a titre of 0.25 logio TCID5o/25 midges. 

To calculate the lowest viral titres (i. e. 0.75-1.5 loglo TCID5o/25 midges; CPE only in 

test units containing undiluted midge suspension), for which there is no value for the 
highest dilution producing 100% CPE, 1 log10 was subtracted from the equivalent 
titres calculated for -1loglo dilution (Table A. 1). 

138 



Appendix I 

Table A. 1 Calculation of lowest viral titres i. e. 0.75-1.51oglo TCID50/25 midges. 

Logo virus dilution Infected test units 
Viral titre 

loglo TCID50/25 midges 

0 1/4 1.75 -1= 0.75 

0 2/4 2-1=1 

0 3/4 2.25 - 1=1.25 

0 4/4 2.5 -1=1.5 

-1 1/4 1.75 

-1 2/4 2 

-1 3/4 2.25 

-1 4/4 2.5 

1.4 Individual C. imicola (Chapter 4) 

- Individual midges ground up in 1 ml of diluent (midge suspension) 

-2 ten-fold dilutions prepared (if virus was initially detected in the undiluted midge 

suspension) 

- 0.1 ml of midge suspension and each dilution inoculated onto each of 4 microtitre 

plate wells 

Calculation of viral titres in individual C. imicola was the same as for the pools of 25 

C. imicola (A3), except the assay could only detect viral titres of 0.75 - 3.5 loglo 

TCID50/midge as only 2 ten-fold dilutions were prepared. 

1.5 Individual C. nubeculosus (Chapter 5) 

- Individual midges ground up in 0.5 ml of diluent 

-3 ten-fold dilutions prepared 

- 0.1 ml of each dilution inoculated onto each of 6 microtitre plate wells (test units) 
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Example 

Loglo virus dilution Infected test units 

-1 5/6 

-2 2/6 

-3 0/6 

Loglo TCID50 = -(-1) + 0.5 + 2/6 

= 1.8331ogto TCID50/0.1 ml (given that inoculation of virus dilution was 0.1 ml) 

=1 loglo + 1.8331ogio TCID50/ml 

= 2.8331ogto TCID50/m1d 

d To calculate the loglo TCID50/midge, 0.3 loglo (= 2) was subtracted from this value, 

as individual midges were ground up in half the volume (i. e. 0.5 ml). 

This assay could detect viral titres of 1.367 - 4.2 logio TCID50/midge. The first 

infected test unit (i. e. 1/6 infected test units, -1 logio dilution) represented a titre of 

1.367 loglo TCID50/midge and each additional infected test unit represented a titre of 

0.167 log, o TCID5o/midge. 

140 



Appendix 2 

APPENDIX 2 

Calculation of Saturation Deficit (Chapters 3 and 6) 

Saturation deficit mbar = SVP - AVP 

SVP = saturation vapour pressure mbar, AVP = actual vapour pressure mbar 

Calculation of SVP 

SVP = 9.24349 - 
2305 

- 
500 

- 
100000 

T T2 T3 

where T= temperature °K 

Calculation of AVP 

Relative humidity (RH) = 
SVP 

x 100 

:. AVP = 
RH 

x SVP 
100 
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